MHB You have only 3 minutes for a better solution to this integral

  • Thread starter Thread starter Lorena_Santoro
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral of $\cos^3(2x)$ can be simplified using the identity $\cos^3(2x) = [1-\sin^2(2x)]\cos(2x)$. By substituting $u = \sin(2x)$, the differential becomes $du = 2\cos(2x) \, dx$, allowing the integral to be rewritten as $\frac{1}{2} \int_0^1 (1 - u^2) \, du$. This integral can be evaluated to find the final result. The process demonstrates an effective method for solving integrals involving trigonometric functions.
Lorena_Santoro
Messages
22
Reaction score
0
 
Mathematics news on Phys.org
$\cos^3(2x) = [1-\sin^2(2x)]\cos(2x)$

use the substitution $u = \sin(2x) \implies du = 2\cos(2x) \, dx$

$\displaystyle \dfrac{1}{2} \int_0^1 1-u^2 \, du$

you can finish up from here
 
skeeter said:
$\cos^3(2x) = [1-\sin^2(2x)]\cos(2x)$

use the substitution $u = \sin(2x) \implies du = 2\cos(2x) \, dx$

$\displaystyle \dfrac{1}{2} \int_0^1 1-u^2 \, du$

you can finish up from here
Thank you!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top