Zero's question at Yahoo Answers regarding interpolating to find a z-score

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the approximation of a z-score for the value 2.3756 using interpolation techniques. The z-scores for areas 2.37 and 2.38 are identified as 0.4911 and 0.4913, respectively. The interpolation formula is derived, leading to the conclusion that the approximate z-score is 0.491212. Additionally, numeric integration confirms a z-score of approximately 0.49124, highlighting the importance of accurate calculations in statistical analysis.

PREREQUISITES
  • Understanding of z-scores and their significance in statistics
  • Familiarity with interpolation methods in numerical analysis
  • Basic knowledge of integral calculus, specifically for normal distributions
  • Ability to interpret statistical tables and graphs
NEXT STEPS
  • Study the properties of the normal distribution and its applications
  • Learn about different interpolation techniques, such as linear and polynomial interpolation
  • Explore numeric integration methods, including the trapezoidal rule and Simpson's rule
  • Investigate the use of statistical software for calculating z-scores and probabilities
USEFUL FOR

Statisticians, data analysts, students in statistics courses, and anyone involved in statistical modeling or data interpretation will benefit from this discussion.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Z score approximation ?

How do you approximate a z score when you have something like 2.3756Additional Details: how do you interlope ?

Here is a link to the question:

Z score approximation ? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Re: Zero's quastion at Yahoo! answers regarding interpolating to find a z-score

Hello Zero,

Consulting a table, we find that the $z$-score associated with an area of 2.37 is 0.4911 and for an area of 2.38 is 0.4913.

To interpolate, we may simply use the ratio:

$$\frac{2.38-2.37}{0.4913-0.4911}=\frac{2.3756-2.37}{\Delta z}$$

$$\frac{0.01}{0.0002}=\frac{0.0056}{\Delta z}$$

$$50=\frac{7}{1250\Delta z}$$

$$\Delta z=\frac{7}{62500}=0.000112$$

And so, we may state:

$$z\approx0.4911+\Delta z=0.491212$$

Using numeric integration, we find:

$$z=\frac{1}{\sqrt{2\pi}}\int_0^{2.3756}e^{-\frac{x^2}{2}}\,dx\approx0.49124$$

To Zero and any other guests viewing this topic, I invite and encourage you to register and post any other normal distribution question in our http://www.mathhelpboards.com/f23/ forum.

Best Regards,

Mark.
 
Re: Zero's quastion at Yahoo! answers regarding interpolating to find a z-score

MarkFL said:
Hello Zero,

Consulting a table, we find that the $z$-score associated with an area of 2.37 is 0.4911 and for an area of 2.38 is 0.4913.

To interpolate, we may simply use the ratio:

$$\frac{2.38-2.37}{0.4913-0.4911}=\frac{2.3756-2.37}{\Delta z}$$

$$\frac{0.01}{0.0002}=\frac{0.0056}{\Delta z}$$

$$50=\frac{7}{1250\Delta z}$$

$$\Delta z=\frac{7}{62500}=0.000112$$

And so, we may state:

$$z\approx0.4911+\Delta z=0.491212$$

Using numeric integration, we find:

$$z=\frac{1}{\sqrt{2\pi}}\int_0^{2.3756}e^{-\frac{x^2}{2}}\,dx\approx0.49124$$

To Zero and any other guests viewing this topic, I invite and encourage you to register and post any other normal distribution question in our http://www.mathhelpboards.com/f23/ forum.

Best Regards,

Mark.

There is something wrong here, probabilities (areas) are in the range 0 to 1 and z scores can be any real number, here they look the other way around. (Which is what the integral at the end would be saying if the z on the left hand side were replaced with p and the variable of integration were z.)

.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K