MHB Zero's question at Yahoo Answers regarding interpolating to find a z-score

  • Thread starter Thread starter MarkFL
  • Start date Start date
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Z score approximation ?

How do you approximate a z score when you have something like 2.3756Additional Details: how do you interlope ?

Here is a link to the question:

Z score approximation ? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Zero's quastion at Yahoo! answers regarding interpolating to find a z-score

Hello Zero,

Consulting a table, we find that the $z$-score associated with an area of 2.37 is 0.4911 and for an area of 2.38 is 0.4913.

To interpolate, we may simply use the ratio:

$$\frac{2.38-2.37}{0.4913-0.4911}=\frac{2.3756-2.37}{\Delta z}$$

$$\frac{0.01}{0.0002}=\frac{0.0056}{\Delta z}$$

$$50=\frac{7}{1250\Delta z}$$

$$\Delta z=\frac{7}{62500}=0.000112$$

And so, we may state:

$$z\approx0.4911+\Delta z=0.491212$$

Using numeric integration, we find:

$$z=\frac{1}{\sqrt{2\pi}}\int_0^{2.3756}e^{-\frac{x^2}{2}}\,dx\approx0.49124$$

To Zero and any other guests viewing this topic, I invite and encourage you to register and post any other normal distribution question in our http://www.mathhelpboards.com/f23/ forum.

Best Regards,

Mark.
 
Re: Zero's quastion at Yahoo! answers regarding interpolating to find a z-score

MarkFL said:
Hello Zero,

Consulting a table, we find that the $z$-score associated with an area of 2.37 is 0.4911 and for an area of 2.38 is 0.4913.

To interpolate, we may simply use the ratio:

$$\frac{2.38-2.37}{0.4913-0.4911}=\frac{2.3756-2.37}{\Delta z}$$

$$\frac{0.01}{0.0002}=\frac{0.0056}{\Delta z}$$

$$50=\frac{7}{1250\Delta z}$$

$$\Delta z=\frac{7}{62500}=0.000112$$

And so, we may state:

$$z\approx0.4911+\Delta z=0.491212$$

Using numeric integration, we find:

$$z=\frac{1}{\sqrt{2\pi}}\int_0^{2.3756}e^{-\frac{x^2}{2}}\,dx\approx0.49124$$

To Zero and any other guests viewing this topic, I invite and encourage you to register and post any other normal distribution question in our http://www.mathhelpboards.com/f23/ forum.

Best Regards,

Mark.

There is something wrong here, probabilities (areas) are in the range 0 to 1 and z scores can be any real number, here they look the other way around. (Which is what the integral at the end would be saying if the z on the left hand side were replaced with p and the variable of integration were z.)

.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top