Big bang and small bang black holes

spideyinspace
Messages
41
Reaction score
0
if BB is true then there should be black holes which should also explode like the big bang...Do we have evidence for this type of small bang black holes...
 
Space news on Phys.org
spideyinspace said:
if BB is true then there should be black holes which should also explode like the big bang...Do we have evidence for this type of small bang black holes...

Are you saying that every singularity may be a big bang?
There is a theory ralated to that: "[URL universes
[/URL]
 
Last edited by a moderator:
spideyinspace said:
if BB is true then there should be black holes which should also explode like the big bang...Do we have evidence for this type of small bang black holes...

Maybe the explosion takes place inside a BH, maybe there is a bounce inside changing a a BH in a WH and maybe it will not be observed from the outside?
 
spideyinspace said:
if BB is true then there should be black holes which should also explode like the big bang...

What Hurk4 says is right. One would not expect to see the re-expansion, because it would be creating a new expanding region---a tract of space separate from our space.

the difficult issue is what observable consequences can be derived from the models that have this feature, that astronomers can look for

something about our own big bang? some distinctive signature to tell us where it could have come from.
some signature in the gammaray bursts which seem to be associated with the collapse of massive stars into black holes? something associated with black holes, in other words.

the tricky thing is the evidence.
there are a number of research papers that give theoretical models of how the collapse of a star could "bounce" and result in a second region of spacetime* that expands from the pit----theorists argue about these models. the hard thing is to find out what OTHER distinctive things the various models predict, so they can be tested.

*concealed from our observable universe by the black hole's event horizon
 
Last edited:
marcus said:
What Hurk4 says is right. One would not expect to see the re-expansion, because it would be creating a new expanding region---a tract of space separate from our space.

the difficult issue is what observable consequences can be derived from the models that have this feature, that astronomers can look for

something about our own big bang? some distinctive signature to tell us where it could have come from.
some signature in the gammaray bursts which seem to be associated with the collapse of massive stars into black holes? something associated with black holes, in other words.

the tricky thing is the evidence.
there are a number of research papers that give theoretical models of how the collapse of a star could "bounce" and result in a second region of spacetime* that expands from the pit----theorists argue about these models. the hard thing is to find out what OTHER distinctive things the various models predict, so they can be tested.

*concealed from our observable universe by the black hole's event horizon

I have some secondary questions here.
1) Is there (already?) something known about the relation of the mass (of the rebouncing hole) and the speed of evaporation by Hawking radiation. I think that theory says that small holes evaporate faster than big holes? (To be remarked here is that the smallest possible hole has the Planck dimension and that it lifetime is of the order of Planck time i.e. 10E-43second. Big holes live very very long and must look very static). I don't think 'Hawking evaporation has anything to do with an explosion.
2) Can it be expected from theory that such a Hawking evaporation flux eventually can be observed in case of very small holes?
3) Maybe observation of Hawking radiation flux can give us qualitative and quantitave information about small holes?
 
hurk4 said:
I have some secondary questions here.
1) Is there (already?) something known about the relation of the mass (of the rebouncing hole) and the speed of evaporation by Hawking radiation. I think that theory says that small holes evaporate faster than big holes? (To be remarked here is that the smallest possible hole has the Planck dimension and that it lifetime is of the order of Planck time i.e. 10E-43second. Big holes live very very long and must look very static). I don't think 'Hawking evaporation has anything to do with an explosion.
2) Can it be expected from theory that such a Hawking evaporation flux eventually can be observed in case of very small holes?
3) Maybe observation of Hawking radiation flux can give us qualitative and quantitave information about small holes?

at least some of these could be answered better by some of the others here and I hope they do. they are good questions.
1) AFAIK the answer is NO. the speed of evaporation----the lifetime of the BH---is governed by the mass of the BH

but different models (all are preliminary) allow for different relations between the ingoing mass of the BH and the outgoing.

2) I personally expect that if and when we observe small BH we will observe their high-flux final burst of radiation. So the answer here is yes.

3) YES! in my opinion, it will be the best or one of the best sources of information
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...

Similar threads

Replies
19
Views
1K
Replies
7
Views
3K
Replies
25
Views
3K
Replies
20
Views
2K
Replies
13
Views
3K
Replies
22
Views
4K
Replies
6
Views
2K
Replies
17
Views
3K
Back
Top