- 6,221
- 31
Homework Statement
Part of a question here...
Show that
\frac{d}{dx} \left[ \frac{x}{(4-x^2)^n} \right ] = \frac{1-2n}{(4-x^2)^n} - \frac{8n}{(4-x^2)^{n+1}}
Homework Equations
\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}
The Attempt at a Solution
So, using the quotient law I get
\frac{(4-x^2)^n \times 1 -(x) \times n(4-x^2)^{n-1} \times -2x}{(4-x^2)^{2n}}
=\frac{1-2nx^2(4-x^2)^{-1}}{(4-x^2)^n}
=\frac{1}{(4-x^2)^n} - \frac{2nx^2}{(4-x^2)^{n+1}}
I seem to have the denominators correct but not the numerators. Did I do it wrong or are there more ways to simplify?
Last edited: