Why is the function f(z) = ¯z not differentiable for any z ∈ C?

  • Thread starter Thread starter Applejacks
  • Start date Start date
  • Tags Tags
    Conjugate
Applejacks
Messages
33
Reaction score
0

Homework Statement



Show that f(z) = ¯z is not differentiable for any z ∈ C.

Homework Equations


The Attempt at a Solution



Is it because the Cauchy-Reimann Equations don't hold?

Z (conjugate) = x-iy
u(x,y)=x
v(x,y=-iy

du/dx=1≠dv/dy=-1
du/dy=0≠-dv/dx=0
Edit: Is there another approach? Because the CR Equations is something we learned later on.
 
Physics news on Phys.org
Applejacks said:

Homework Statement



Show that f(z) = ¯z is not differentiable for any z ∈ C.

Homework Equations


The Attempt at a Solution



Is it because the Cauchy-Reimann Equations don't hold?

Z (conjugate) = x-iy
u(x,y)=x
v(x,y=-iy

du/dx=1≠dv/dy=-1
du/dy=0≠-dv/dx=0
Edit: Is there another approach? Because the CR Equations is something we learned later on.

Sure. Use the definition of f'(z)=lim h->0 (f(z+h)-f(z))/h. Show the limit is different if you pick h to be real from the limit if you pick h to be imaginary. That's really what the content of the CR equations is.
 
Last edited:
I think I get it now.

(f(z+h)-f(z))/h

(conjugate((z+h)-z))/h = h(conjugate)/h

If h=Δx, the ratio equals 1
If h=Δiy, the ratio equals -1.

Since the two approaches don't agree for any z, z(conj) is not analytic anywhere. Correct?
 
Applejacks said:
I think I get it now.

(f(z+h)-f(z))/h

(conjugate((z+h)-z))/h = h(conjugate)/h

If h=Δx, the ratio equals 1
If h=Δiy, the ratio equals -1.

Since the two approaches don't agree for any z, z(conj) is not analytic anywhere. Correct?

Yep, that's it. That's how you derive CR.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top