Electric field in a hollow cylinder

magnifik
Messages
350
Reaction score
0
An infinitely long thick hollow cylinder has inner radius Rin and outer radius Rout. It has a non-uniform volume charge density, ρ(r) = ρ0r/Rout where r is the distance from the cylinder axis. What is the electric field magnitude as a function of r, for Rin < r < Rout?

for this problem, when you find qinside, do you integrate from Rin to r or from Rin to Rout? I'm confused because i would have expected it to be the latter, but in the solutions they integrate from Rin to r. can someone please explain this?

also, if you try to find the e-field where r > Rout, do you integrate from r to Rout?

Solution is here (problem II):
http://www.physics.gatech.edu/~em92/Classes/Fall2011/2212GHJ/main/quiz_help/200908/q2s.pdf
 
Last edited by a moderator:
Physics news on Phys.org
Just use Gauss' theorem. The surface has radius r, and
q(inside) is whatever's inside!
 
rude man said:
Just use Gauss' theorem. The surface has radius r, and
q(inside) is whatever's inside!

since in the example in the document it asks for Rin < r < Rout.. why does it integrate from Rout to r??
 
It doesn't. It integrates from Rin to r.
 
rude man said:
It doesn't. It integrates from Rin to r.

but why not Rin to Rout?
 
Because ity asks for the field at Rin < r < Rout, not AT Rout.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top