How to find cutoff frequencies from Bode plot?

AI Thread Summary
Cutoff frequencies on a Bode plot are identified where the slope of the magnitude plot changes, indicating a transition in the filter's behavior. These frequencies, referred to as "corner frequencies," occur at points where the slope alters from its previous trend, often visualized as intersections of straight-line segments drawn through the plot. The specific cutoff frequencies mentioned—1, 20, 80, 500, and 8000—can be determined by approximating the amplitude plot with these segments and observing where they intersect. Understanding these concepts allows for easier identification of cutoff frequencies by inspecting the plot. Mastering this technique is essential for analyzing filter characteristics effectively.
dominicfhk
Messages
11
Reaction score
0

Homework Statement


http://img832.imageshack.us/img832/7517/captureax.jpg
According to the solution, the cutoff frequencies are 1, 20, 80, 500 and 8000. I don't understand how to get those answers by inspecting the plot.

Homework Equations


None

The Attempt at a Solution


I think the cutoff frequency is defined as the frequency at which the ratio of input/output equals to 0.707, or whenever the magnitude of the frequency breaks downward. However, I don't see why 1, 20, 80, 500 and 8000 are the cutoff frequency for this bode plot. So how exactly can I tell what the cutoff frequencies are by inspecting the plot? Thank you so much.
 
Last edited by a moderator:
Physics news on Phys.org
The term is "corner frequency", and describes where the slope of the magnitude plot "turns a corner". This manifests as places where the slope alters from its previous "trend", for example going from convex to concave in shape.

If you look at the plot of a simple first-order filter (say a low pass filter), it can be represented schematically as a horizontal straight line which turns a corner and thereafter follows a new straight line that slopes down to the right with increasing frequency. (In reality the "corner" is rounded curve, but schematically you can picture the intersection of the two line segments).

If you cascade a number of filter sections with different "corners", the slope changes are cumulative and cause the bode plot to undulate accordingly. Picking out the corners from the plot is a matter of looking for the (sometimes subtle) slope changes.
 
dominicfhk said:
According to the solution, the [STRIKE]cutoff[/strike] corner[/color] frequencies are 1, 20, 80, 500 and 8000. I don't understand how to get those answers by inspecting the plot.
Well, it is certainly a help to be told what the corner frequencies are. :smile: It makes finding them just that much easier. :-p

Try to approximate the amplitude plot by drawing straight-line segments. These can have gradients (in dB/decade) of 0, ±20, ±40, etc. The corners where adjacent line segments intersect define the corner frequencies described above.
 
Thread 'Have I solved this structural engineering equation correctly?'
Hi all, I have a structural engineering book from 1979. I am trying to follow it as best as I can. I have come to a formula that calculates the rotations in radians at the rigid joint that requires an iterative procedure. This equation comes in the form of: $$ x_i = \frac {Q_ih_i + Q_{i+1}h_{i+1}}{4K} + \frac {C}{K}x_{i-1} + \frac {C}{K}x_{i+1} $$ Where: ## Q ## is the horizontal storey shear ## h ## is the storey height ## K = (6G_i + C_i + C_{i+1}) ## ## G = \frac {I_g}{h} ## ## C...
Back
Top