pierce15
- 313
- 2
Check this out:
\int_{-1}^{0} ln(x) dx
u=ln(x), dv=dx
du=\frac{1}{x},v=x
\int_{-1}^{0} ln(x) dx= x\space ln(x) \|_{-1}^{0} -\int_{-1}^{0} \frac{x}{x} dx
=x\space ln(x) \|_{-1}^{0}-x \|_{-1}^{0}
=\lim_{x\to0} x\space ln(x)-(-ln(-1))-(0-(-1))
\lim_{x\to0} x\space ln(x)=lim_{x\to0} \frac{ln(x)}{1/x}
=\lim_{x\to0} \frac{1/x}{-1/x^2}
=\lim_{x\to0} -x=0
\int_{-1}^{0} ln(x)dx=ln(-1)-1
e^{i\pi}=-1\to ln(-1)=i\pi
\int_{-1}^{0}ln(x)\space dx=i\pi-1
Is this legitimate?
P.S. Why don't my limits look right?
\int_{-1}^{0} ln(x) dx
u=ln(x), dv=dx
du=\frac{1}{x},v=x
\int_{-1}^{0} ln(x) dx= x\space ln(x) \|_{-1}^{0} -\int_{-1}^{0} \frac{x}{x} dx
=x\space ln(x) \|_{-1}^{0}-x \|_{-1}^{0}
=\lim_{x\to0} x\space ln(x)-(-ln(-1))-(0-(-1))
\lim_{x\to0} x\space ln(x)=lim_{x\to0} \frac{ln(x)}{1/x}
=\lim_{x\to0} \frac{1/x}{-1/x^2}
=\lim_{x\to0} -x=0
\int_{-1}^{0} ln(x)dx=ln(-1)-1
e^{i\pi}=-1\to ln(-1)=i\pi
\int_{-1}^{0}ln(x)\space dx=i\pi-1
Is this legitimate?
P.S. Why don't my limits look right?
Last edited: