Register to reply

Derivation of the Proca equation from the Proca Lagrangian

by timewalker
Tags: formulation, lagrangian, proca equation
Share this thread:
timewalker
#1
Jul5-11, 06:42 AM
P: 15
How to show the Proca equation by using the given Proca Lagrangian?
Surely, I know the Euler-Lagrange equation, but I can't solve this differentiation!!(TT)

The given Proca lagrangian is,
[itex]\mathcal{L}= -\frac{1}{16\pi}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+ \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A^{\nu} A_{\nu}[/itex]

and the Euler-Lagrangian equation is,
[itex]\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu} A^{\nu})}) = \frac{\partial \mathcal{L}}{\partial A^\nu}[/itex]

At first, I just tried to solve

[itex]\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A^{\nu})}= \frac{\partial}{\partial(\partial_{\nu}A^{\mu})}(-\frac{1}{16 \pi}(\partial^{\mu}A^{\nu}-\partial{^\nu}A^{\mu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+\cdots)[/itex]

but I think I am misunderstand and not very well to handle these indices. So I think I can understand if I can see correct solving procedure. Please help me :(
Phys.Org News Partner Physics news on Phys.org
Physical constant is constant even in strong gravitational fields
Physicists provide new insights into the world of quantum materials
Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays
torus
#2
Jul5-11, 07:13 AM
P: 21
Hi,
you need to raise and lower the indices so they match your derivative-operator, i.e. write

[itex]\partial^\mu A^\nu = g^{\mu \alpha} \partial_\alpha A^\nu[/itex]

then you can use
[itex]\frac{\partial}{\partial (\partial_\alpha A^\beta)} \partial_\mu A^\nu = \delta^\alpha_\mu \delta^\nu_\beta[/itex]

Hope this helps,

torus
timewalker
#3
Jul5-11, 11:06 AM
P: 15
Thank you so much! After I see your reply, I thought a little bit and I got right answer! :)
Let me finish this post. :D

Now we have the Proca Lagrangian given

[itex]\mathcal{L}=-\frac{1}{16 \pi} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} )(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} ) + \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A_{\nu} A^{\nu}[/itex]

Here we use the index lowering/raising as 'torus' said,

[itex]\partial^{\mu} A^{\nu} = g^{\mu \alpha} \partial_{\alpha} A^{\nu} [/itex]
[itex]\partial_{\mu} A_{\nu} = g_{\nu \gamma} \partial_{\mu} A^{\gamma} [/itex]

then we have the Lagrangian in a modified form.

[itex]\mathcal{L}=-\frac{1}{16 \pi} (g^{\mu \alpha} \partial_{\alpha} A^{\nu} - g^{\nu \beta} \partial_{\beta} A^{\mu} )(g_{\nu \gamma} \partial_{\mu} A^{\gamma} - g_{\mu \delta} \partial_{\nu} A^{\delta} ) + \frac{1}{8 \pi} (\frac{mc}{\hbar})^2 A_{\nu} A^{\nu}[/itex]

Now expand the parenthesis in the first term.

[itex](g^{\mu \alpha} \partial_{\alpha} A^{\nu} - g^{\nu \beta} \partial_{\beta} A^{\mu} )(g_{\nu \gamma} \partial_{\mu} A^{\gamma} - g_{\mu \delta} \partial_{\nu} A^{\delta} )[/itex] :: Let this be (*).
[itex]
=g^{\mu \alpha} g_{\nu \gamma}(\partial_{\alpha} A^{\nu})(\partial_{\mu}A^{\gamma})
-g^{\mu \alpha} g_{\mu \delta}(\partial_{\alpha} A^{\nu})(\partial_{\nu} A^{\delta})
-g^{\nu \beta} g_{\nu \gamma} (\partial_{\beta} A^{\mu})(\partial_{\mu} A^{\gamma}) +g^{\nu \beta} g_{\mu \delta} (\partial_{\beta} A^{\mu})(\partial_{\nu} A^{\delta})[/itex]

Now we calculate [itex] \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})}[/itex] to get the Euler-Lagrange equation that [itex] \partial_{\rho} ( \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})}) = \frac{\partial \mathcal{L}}{\partial A^{\sigma}}[/itex].

[itex]\frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})} [/itex]
[itex]=-\frac{1}{16 \pi}\frac{\partial(*) }{\partial (\partial_{\rho} A^{\sigma})} +0 [/itex]

Using the product rule of the differentiation and [itex]\frac{\partial A^{i}}{\partial A^{j}}=\delta_{i}^{j}[/itex], [itex]\frac{\partial(*) }{\partial (\partial_{\rho} A^{\sigma})}[/itex] is,

[itex]\frac{\partial(*) }{\partial (\partial_{\rho} A^{\sigma})} = 4\partial^{\rho} A_{\sigma} - 4 \partial_{\sigma} A^{\rho}[/itex]

Therefore

[itex]\frac{\partial \mathcal{L}}{\partial (\partial_{\rho} A^{\sigma})} = -\frac{1}{4 \pi} (\partial^{\rho} A_{\sigma} - \partial_{\sigma} A^{\rho} )[/itex]

and, using [itex] \frac{\partial \mathcal{L}}{\partial A^{\sigma}} = \frac{1}{4 \pi} (\frac{mc}{\hbar})^2 A^{\sigma}[/itex], the Euler-Lagrange equation yields

[itex] \partial_{\mu} (\partial^{\mu} A_{\nu} - \partial_{\nu} A^{\mu} ) + (\frac{mc}{\hbar})^2 A^{\nu} = 0 [/itex] Q.E.D.

=======================================================================

P.S. Is there any difference between taking the Proca equation by solving
[itex] \partial_{\mu}(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})}) = \frac{\partial \mathcal{L}}{\partial A_{\nu}} [/itex]
and
[itex] \partial_{\mu}(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A^{\nu})}) = \frac{\partial \mathcal{L}}{\partial A^{\nu}} [/itex]
??

Actually my textbook(D.J. Griffiths, Introduction to Elementary Particles, 2nd Edition, Chap. 10.2 Example 3) supposed the vector field [itex]A^{\mu}[/itex] but solved the first one. I can't agree with that so I asked about the second one. Is there any problem?

torus
#4
Jul6-11, 06:10 AM
P: 21
Derivation of the Proca equation from the Proca Lagrangian

No, there is no difference as they are connected by just raising/lowering the index nu.
mrmokri
#5
Nov30-12, 10:22 AM
P: 1
thanx timewalker


Register to reply

Related Discussions
Massive vector (Proca) propagator Advanced Physics Homework 5
Discrete transformation of Proca field Quantum Physics 0
Advice on a derivation from Guage Fixing Lagrangian to Equation or motion? High Energy, Nuclear, Particle Physics 8
Deriving the EOM for Proca Lagrangian Advanced Physics Homework 3
Proca theory & renormalization General Physics 5