
#1
Sep806, 02:43 PM

P: 70

I understand that the limit of sec^2(x) as x approaches pi/2 is infinity (increasing without bound), and I understand the meaning of this in terms of the epsilondelta definition of an infinite limit.
I also understand why the limit of sec(x) as x approaches pi/2 doesn't exist. What I'm a bit "sketchy" on is why my calculator (Ti89 Titanium) displayes "infinity" as the value for sec^2(pi/2) and "undefined" for sec(pi/2) (not when evaluating the limit, but just when evaluating the function at that value). Why aren't sec^2(pi/2) and sec(pi/2) both displayed as "undefined"? Neither sec^2(x) nor sec(x) have a defined value at pi/2, do they? The fact that in one case the limit exists doesn't seem to have any effect on the value of either function at pi/2 (my book stresses the point that the limit of f(x) as x>a doesn't necessarily mean that f(a) = L, f(a) need not even exist  which seems to be the case here) I'm also confused because there is a bit of ambiguity in my mind concerning "1/0" and "infinity" Can anyone help me understand this...? GeoMike 



#2
Sep806, 03:55 PM

Sci Advisor
P: 1,253

When your calculator evaluates sec(pi/2)^2 it replaces the undefined value with the limit. When your calculator evalutes sec(pi/2) there is no limit since the function goes to negative infinity on one side of pi/2 and to positive infinity on the other side, so the calculator just says undefined.
At least, that's how the calculator works. It's only a quirk of its operation. It has nothing to do with the function's actual value at pi/2, which is not defined in either case. 



#3
Sep806, 04:36 PM

P: 70

Thank you, that cleared a lot up for me.
GeoMike 


Register to reply 
Related Discussions  
Integral Limits: Infinity.  Calculus & Beyond Homework  5  
Limits, infinity, and cardinality (oh, and integrals too)  Calculus  11  
Limits of polynomials at infinity  Calculus  3  
limits at infinity  Calculus & Beyond Homework  2  
Infinity Limits  Calculus & Beyond Homework  1 