Curvature Circle Proof

by americanforest
Tags: circle, curvature, proof
americanforest is offline
Jan17-07, 07:28 PM
P: 218
Here is the problem:

Show that if [tex]c[/tex] is a curve with [tex]\kappa=\frac{1}{r}[/tex] (r is a positive constant) that [tex]c[/tex] is moving on a circle of radius r.

He gives a hunt to use the formula [tex]E(s)=C(s)+rN(s)[/tex]. I don't know where he got this equations and I have no idea what the function E is supposed to represent. I'm sure C and S are position and arclength respectively. So first I showed that [tex]\frac{dE}{ds}=0[/tex] with the definitions of T and N vectors as related to curvature K.

Then he gives a hint to show [tex]absolute value(C-E)=r[/tex] which I have no idea how to show, and then from that to explain why that makes C a circle or radius r?

I know that the equation for a circle is nx^2+ny^2=r^2 but I don't see where that will get me here.

Any help?

I know this isn't in the correct format but this is more of a rigorous proof than a problem with given information...
Phys.Org News Partner Science news on
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes

Register to reply

Related Discussions
simple circle circle collision detection General Math 6
Symmetry of a circle proof Introductory Physics Homework 8
Circle Proof Calculus & Beyond Homework 2
:frown: Normal curvature integral proof Calculus & Beyond Homework 1
Geodesic Curvature (Curvature of a curve) Differential Geometry 8