Does [2 15]T Lie in the Column Space of A?

FourierX
Messages
73
Reaction score
0

Homework Statement



Does b = [ 2 15 ]T lie in the column of the matrix A

[1 -3]
[2 5]


Homework Equations



a basis of CS(U) forms a basis for the corresponding columns for CS(A)

The Attempt at a Solution


I reduced the given matrix into row echelon form and determined its column space. But did not figure out if [2 15]T lies in the column space of A.
 
Physics news on Phys.org
Your matrix A reduces to the identity matrix in reduced row echelon form; so then the column space is made up of all the columns of the original matrix;

<br /> \text{Col}(A)=\left\{<br /> \begin{pmatrix}<br /> 1 \\<br /> -3 <br /> \end{pmatrix}<br /> ,<br /> \begin{pmatrix}<br /> 2 \\<br /> 5 <br /> \end{pmatrix} \right\}<br />

So does the vector they're asking lie in that space? In other words is it a linear combination of those vectors in the space?
 
Is the

<br /> \text{Col}(A)=\left\{<br /> \begin{pmatrix}<br /> 1 \\<br /> 2 <br /> \end{pmatrix}<br /> ,<br /> \begin{pmatrix}<br /> -3 \\<br /> 5 <br /> \end{pmatrix} \right\}<br />

or

<br /> \text{Col}(A)=\left\{<br /> \begin{pmatrix}<br /> 1 \\<br /> -3 <br /> \end{pmatrix}<br /> ,<br /> \begin{pmatrix}<br /> 2 \\<br /> 5 <br /> \end{pmatrix} \right\}<br />
?
The given matrix is

<br /> <br /> \begin{pmatrix}<br /> 1; -3\\<br /> 2; 5<br /> \end{pmatrix}<br />
 
thanks, i resolved it!
 
Oh yea sorry I read your matrix backwards accidentally. Glad you got it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top