Register to reply

Statistical Mechanics: classical Heisenberg Model

Share this thread:
eXorikos
#1
Jul27-11, 12:34 PM
P: 249
1. The problem statement, all variables and given/known data
You have a latice of particles that all have spin 1, but they can change the direction of their spin so constraint [itex]\left|S_j\right|=1[/itex]. There is only interaction with the closest neighbours so we have the following hamiltonian:

[itex]H = -J \sum_{\left\langle ij \right\rangle} \vec{S_i} \cdot\vec{S_j} - \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}}[/itex]

Choose a good orderparameter to treat this in the molecular field approximation. Calculate the selfconsistent equation for this order parameter and determine the spontaneous magnetisation for [itex]T<T_c=Jq/3k_b[/itex].

2. Relevant equations
[itex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp{\left(-\beta H\right)}[/itex]
[itex]M = \frac{1}{\beta} \nabla_h ln Z[/itex]

3. The attempt at a solution
As order parameter I pick [itex]\vec{M} = \sum_j \vec{S_j}[/itex] and than I approximate the hamiltonian with q nearest neighbors by
[itex]H = \frac{-Jq}{2N} \left(\sum^N_{j=1} \vec{S_j}\right)^2 - \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}}[/itex]

This gives
[itex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp{\left(\frac{\beta Jq}{2N} \left(\sum^N_{j=1} \vec{S_j}\right)^2 + \beta \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}} \right)}[/itex]

But I can't manage the integral. How do I calculate this integral? The rest I presume is correct?
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
eXorikos
#2
Aug2-11, 12:41 PM
P: 249
Anybody?
eXorikos
#3
Aug17-11, 08:41 AM
P: 249
*Bump*

Mute
#4
Aug22-11, 10:53 PM
HW Helper
P: 1,391
Statistical Mechanics: classical Heisenberg Model

Quote Quote by eXorikos View Post
1. The problem statement, all variables and given/known data
You have a latice of particles that all have spin 1, but they can change the direction of their spin so constraint [itex]\left|S_j\right|=1[/itex]. There is only interaction with the closest neighbours so we have the following hamiltonian:

[itex]H = -J \sum_{\left\langle ij \right\rangle} \vec{S_i} \cdot\vec{S_j} - \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}}[/itex]

Choose a good orderparameter to treat this in the molecular field approximation. Calculate the selfconsistent equation for this order parameter and determine the spontaneous magnetisation for [itex]T<T_c=Jq/3k_b[/itex].

2. Relevant equations
[itex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp{\left(-\beta H\right)}[/itex]
[itex]M = \frac{1}{\beta} \nabla_h ln Z[/itex]

3. The attempt at a solution
As order parameter I pick [itex]\vec{M} = \sum_j \vec{S_j}[/itex] and than I approximate the hamiltonian with q nearest neighbors by
[itex]H = \frac{-Jq}{2N} \left(\sum^N_{j=1} \vec{S_j}\right)^2 - \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}}[/itex]

This gives
[itex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp{\left(\frac{\beta Jq}{2N} \left(\sum^N_{j=1} \vec{S_j}\right)^2 + \beta \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}} \right)}[/itex]

But I can't manage the integral. How do I calculate this integral? The rest I presume is correct?
In your integral, replace one factor of [itex]\sum_i S_i[/itex] with your order parameter, M. Your integral is then

[tex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp\left[\left(\frac{\beta Jq\vec{M}}{2N} + \beta \vec{h}\right) \cdot \sum^N_{j=1} \vec{S_j}\right].[/tex]

Treating M as independent of the S_i, the different sites are no longer coupled and you can now perform the integrals. If you then compute M by [itex]M = \beta^{-1}\nabla_h \ln Z[/itex], you will find the right hand side has M in it - this is your self-consistent equation for M. (Well, you have an equation for each component of M).

Analyze the self-consistent equation(s) and show that at some temperature there is a phase transition (i.e., a new solution to the self consistent equation appears).
eXorikos
#5
Sep2-11, 12:21 PM
P: 249
Am I on the right track trying to use spherical coordinates or is there another way of calculating the integral more easy? Because then I can keep R=1 and integrate both angles respectively from 0 to pi and 0 to 2pi.
eXorikos
#6
Sep3-11, 03:43 AM
P: 249
Quote Quote by Mute View Post
In your integral, replace one factor of [itex]\sum_i S_i[/itex] with your order parameter, M. Your integral is then

[tex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp\left[\left(\frac{\beta Jq\vec{M}}{2N} + \beta \vec{h}\right) \cdot \sum^N_{j=1} \vec{S_j}\right].[/tex]

Treating M as independent of the S_i, the different sites are no longer coupled and you can now perform the integrals. If you then compute M by [itex]M = \beta^{-1}\nabla_h \ln Z[/itex], you will find the right hand side has M in it - this is your self-consistent equation for M. (Well, you have an equation for each component of M).

Analyze the self-consistent equation(s) and show that at some temperature there is a phase transition (i.e., a new solution to the self consistent equation appears).
I'll write where I'm at now:
Set [tex]\vec{h}^{eff}=\frac{\beta Jq\vec{M}}{2N} + \beta \vec{h}[/tex]
[tex]Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp\left[\vec{h}^{eff} \cdot \sum^N_{j=1} \vec{S_j}\right][/tex]
[tex]= \prod_{j=1}^{N} \int_{\left|S_j\right|=1} d^3S_jexp\left(\vec{h}^{eff} \cdot \vec{S_j}\right)[/tex]

Now trying to calculate it seems easier to work with spherical coordinates because of the condition that [itex]\left|S_j\right|=1[/itex], but I'm guessing there is some kind of technique I don't know about for calculating this integral. Because doing the dot product in spherical coordinates will make life hard.
Mute
#7
Sep4-11, 01:27 PM
HW Helper
P: 1,391
Quote Quote by eXorikos View Post
I'll write where I'm at now:
Set [tex]\vec{h}^{eff}=\frac{\beta Jq\vec{M}}{2N} + \beta \vec{h}[/tex]


Now trying to calculate it seems easier to work with spherical coordinates because of the condition that [itex]\left|S_j\right|=1[/itex], but I'm guessing there is some kind of technique I don't know about for calculating this integral. Because doing the dot product in spherical coordinates will make life hard.
The dot product isn't hard - it's just [itex]h_x^{eff}S_x + h_y^{eff}S_y + h_z^{eff}S_z[/itex]. You then switch to spherical coordinates by the relations [itex]S_x = \cos\phi\sin\theta[/itex], [itex]S_y = \sin\phi\sin\theta[/itex] and [itex]S_z = \cos\theta[/itex]. So, your integral is then

[tex]Z_j= \int_0^\pi d\theta \int_0^{2\pi} d\phi~\sin^2\theta \exp\left[ h_x^{eff}\cos\phi\sin\theta + h_y^{eff}\sin\phi\sin\theta + h_z^{eff}\cos\theta\right][/tex]

This integral, however, is still rather hard to do.

I think what may be easier to due is use [itex]h^{eff} \cdot S = |h^{eff}||S|\cos\gamma = |h^{eff}|\cos\gamma[/itex], where [itex]\gamma[/itex] is the angle between the vector [itex]h^{eff}[/itex] and [itex]S[/itex]. [itex]\gamma[/itex] runs from 0 to [itex]\pi[/itex]. There's still another angle [itex]\phi[/itex] which runs over 0 to 2*Pi, but the integrand no longer depends on it so you just get a factor of 2*Pi. Now, I'm afraid I don't remember the Jacobian off the top of my head, so you'll have to work that out.

[tex]Z_j= 2\pi \int_0^{\pi} d\gamma~\mathcal J(\gamma) \exp\left[|h^{eff}|\cos\gamma\right][/tex]

I don't know if the resulting integral will be doable. It may be expressible in terms of some sort of Bessel function (or a modified Bessel function).
eXorikos
#8
Sep4-11, 03:58 PM
P: 249
That's all way to complicated to solve in an exam of 4 ours together with two other questions. This was a question of a previous exam so it shouldn't be so convoluted. Thanks for your help!
Mute
#9
Sep6-11, 11:32 AM
HW Helper
P: 1,391
If I were in an exam situation and I just wanted to find the critical temperature, I would probably try assuming that there is a disordered phase in which the total magnetization was zero, and then choose [itex]\mathbf{h} = h_z \hat{z}[/itex]. Near the transition the z component of the magnetization is probably the one that would acquire a non-zero value, so the integral you would have to do is

[tex]Z_j= 2\pi \int_0^{\pi} d\theta~\sin^2\theta \exp\left[h^{eff}_z\cos\theta\right][/tex]
This apparently can be evaluated in terms of a modified Bessel function, but unless you've memorized that it probably won't be too handy on an exam. So, what I would do now is take a derivative with respect to h_z. This brings down a factor of cos(theta) and a beta, so you get

[tex]M_z = 2\pi \int_0^{\pi} d\theta~\sin^2\theta \cos\theta\exp\left[h^{eff}_z\cos\theta\right],[/tex]

which still isn't doable. However, again, you just want the transition, so we can do two things: 1) set h_z = 0 now. From the Ising model, you should have some intuition that there is no transition for finite h. The transition you're looking for is a zero-field transition. 2) Assume M_z is small and expand the exponential.

You'll find you have to expand the exponential to 3rd order in M_z, as the zeroth and second order terms vanish, and you can't have just the first order term or you'd have M = stuff*M.

Doing the expansion (quickly - you'll have to check my work) yields something that looks like

[tex]M_z = \frac{2\pi\beta Jq}{2N}I_1 M_z + 2\pi\left(\frac{\beta Jq}{2N}\right)^3I_2 M_z^3[/tex]
where the I's are integrals that you could do because they're just trigonometric. Anywho, we don't even care about I2. Cancelling a factor of M_z you get something like

stuff*M_z^2 = 1 - other stuff.

Now, the 1- other stuff obviously has to be positive, otherwise you have no solution other than M_z = 0 (which we divided out). So, solve (1 - other stuff) = 0 for T to find the transition temperature. I'm don't think I got the exact result you quoted in your first post, but it'll be close, and for a time-constrained test it would hopefully get you most of the points for the problem.

By the way, I might redefine your order parameter as [itex]M = (1/N)\sum_j S_j[/itex]. That might get rid of N in your equations.


Register to reply

Related Discussions
Classical statistical mechanics question Classical Physics 10
Classical Thermodynamics for Statistical Mechanics Classical Physics 2
Classical statistical mechanics: dimensions of partition function Classical Physics 2
Is Classical Statistical Mechanics dead? General Physics 18
Is Classical Statistical Mechanics dead? General Physics 18