Integrating 1/(Z^2 + A^2) - something wrong?

  • Thread starter Thread starter Froskoy
  • Start date Start date
  • Tags Tags
    Integrating
Froskoy
Messages
26
Reaction score
0

Homework Statement


\int \frac{1}{2t^2+4} \mathrm{d}t[\tex]<h2>Homework Equations</h2><br /> \int \frac{1}{Z^2+A^2} \mathrm{d}Z = \frac{1}{A} \arctan{(\frac{Z}{A})} + c<h2>The Attempt at a Solution</h2><br /> Looks quite easy, but this is what&#039;s annoying me: the two methods below should be identical, but something&#039;s gone wrong and I can&#039;t work out what. For some reason, the second method gives an extra factor of 1/sqrt(2) at the front. Why aren&#039;t they both the same?<br /> <br /> \int \frac{1}{2t^2+4} \mathrm{d}t = \int \frac{1}{(\sqrt{2t})^2+2^2} \mathrm{d}t = \frac{1}{2} \arctan {(\frac{\sqrt{2}t}{2})} + c<br /> <br /> \int \frac{1}{2t^2+4} \mathrm{d}t = \frac{1}{2} \int \frac{1}{t^2+2} = \frac{1}{2 \sqrt{2}} \arctan{(\frac{\sqrt{2} t}{2})}+c<br /> <br /> With very many thanks,<br /> <br /> Froskoy.
 
Physics news on Phys.org
Are you sure that c represents the same value in each?
 
Froskoy said:

Homework Statement


\int \frac{1}{2t^2+4} \mathrm{d}t[\tex]<br /> <br /> <br /> <h2>Homework Equations</h2><br /> \int \frac{1}{Z^2+A^2} \mathrm{d}Z = \frac{1}{A} \arctan{(\frac{Z}{A})} + c<br /> <br /> <br /> <h2>The Attempt at a Solution</h2><br /> Looks quite easy, but this is what&#039;s annoying me: the two methods below should be identical, but something&#039;s gone wrong and I can&#039;t work out what. For some reason, the second method gives an extra factor of 1/sqrt(2) at the front. Why aren&#039;t they both the same?<br /> <br /> \int \frac{1}{2t^2+4} \mathrm{d}t = \int \frac{1}{(\sqrt{2t})^2+2^2} \mathrm{d}t = \frac{1}{2} \arctan {(\frac{\sqrt{2}t}{2})} + c<br /> <br /> \int \frac{1}{2t^2+4} \mathrm{d}t = \frac{1}{2} \int \frac{1}{t^2+2} = \frac{1}{2 \sqrt{2}} \arctan{(\frac{\sqrt{2} t}{2})}+c<br /> <br /> With very many thanks,<br /> <br /> Froskoy.
<br /> <br /> You forgot to use \sqrt{2} dt in the first integral.<br /> <br /> RGV
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top