Deduce primitive lattice vectors from position vector.

maqdah
Messages
14
Reaction score
0

Homework Statement


given the following position vector:

R = (10n1 + 9n2 + 19n3)(a/10) x + 6(n2+n3)(a/5) y + 2(n3)a z

where n1, n2 and n3 are integers
Find the primitive lattice vectors.

Homework Equations


any position vector of a lattice point is of the type
R= c1 a1 + c2 a2 + c3 a3;
and a position vector like the one showed above is a linear combination of the primitive lattice vectors a1, a2 and a3.

The Attempt at a Solution



I think I solved the question correctly, but my intuition tells me its wrong:

we can do the following:
a1 = a/10 X
a2 = a/5 Y
a3 = a Z

In our case, since n1,n2 and n3 are just integers:

c1 = 10n1 + 9n2 + 19n3
c2 = 6(n2 + n3)
c3 = 2n3
 
Physics news on Phys.org
Any hint in the right direction is helpful?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top