Convolution, Triangle Function

unscientific
Messages
1,728
Reaction score
13

Homework Statement



2ppyav6.png


Part (a): Find the intensity as function of ##\theta## and sketch it.

Part (b): Find the intensity as function of ##\theta## and sketch it. Comment on first minima.

Homework Equations


The Attempt at a Solution



Part(a)

Convolution Method

6s59av.png


V_b = \frac{1}{2a}, 0 \leq y \leq a

The convolution ##V_b \otimes V_b ## gives the angular distribution ##V_{b(\beta)}##

Fourier transform of ##V_b##:

\alpha \int_0^{\infty} \frac{1}{2a} e^{-i\beta y} dy
= \frac{\alpha}{2ai\beta}[e^{-i\beta y}]_a^0
= \frac{\alpha}{2ai\beta} [1 - e^{-i\beta a}]
= \frac{1}{2} \alpha e^{\frac{-i\beta a}{2}} \frac{sin ( \frac{\beta a}{2})}{\frac{\beta a}{2}}
|A_{\theta}|^2 = \frac {1}{4} \alpha^2 \frac{sin^2(\beta')}{\beta'^2} = I_0 \frac{sin^2(\beta')}{\beta'^2}

1zxo41h.png


Analytical Method

A_{\theta} = \alpha \int_{-\infty}^{\infty} T_y e^{-iky sin {\theta}} dy

For 0 < y < a:
T_y = \frac{1}{a^2}

For a < y < 2a:
T_y = -\frac{1}{a^2}y + \frac{2}{a}

A_{\theta} = \alpha \int_0^a \frac{1}{a^2} e^{-ikysin\theta} dy + \alpha \int_a^{2a} \left (-\frac{1}{a^2}y + \frac{2}{a}\right )e^{-ikysin\theta} dy

First Integral:

\alpha \int_0^a \frac{1}{a^2} e^{-ikysin\theta} dy
= \alpha \frac{1}{a^2} \frac{1}{iksin\theta} [e^{-ikysin\theta}]_a^0
= \frac{\alpha}{a^2}\frac{1}{iksin\theta}\left (1 - e^{-ikasin\theta}\right )

Second Integral:

\alpha \int_a^{2a} \left (-\frac{1}{a^2}y + \frac{2}{a}\right )e^{-ikysin\theta} dy
=\frac{-\alpha}{a^2}\int_a^{2a} y e^{-ikysin\theta} dy + \frac{2\alpha}{a}\int_a^{2a}e^{-ikysin\theta} dy
=\frac{-\alpha}{a^2}\{ \frac{1}{iksin\theta}[y e^{-ikysin\theta}]_{2a}^a + \frac{1}{iksin\theta}\int_a^{2a} e^{-ikysin\theta} dy \} + \frac{2\alpha}{a} \frac{1}{iksin\theta} [e^{-ikysin\theta}]_{2a}^a
=\frac{-\alpha}{a} \frac{1}{iksin\theta}[e^{-ikasin\theta} - 2e^{-2ikasin\theta}] - \frac{\alpha}{a^2} \frac{1}{k^2sin^2\theta}[e^{-ikysin\theta}]_a^{2a} + \frac{2\alpha}{a}\frac{1}{iksin\theta} [e^{-ikasin\theta} - e^{-2ikasin\theta}]
= -\frac{\alpha}{a}\frac{1}{iksin\theta}[e^{-ikasin\theta} - 2e^{-2ikasin\theta}] - \frac{\alpha}{a^2} \frac{1}{k^2sin^2\theta}[e^{-2ikasin\theta} - e^{-ikasin\theta}] + \frac{2\alpha}{a^2}\frac{1}{iksin\theta}[e^{-ikasin\theta} - e^{-2ikasin\theta}]
= \frac{\alpha}{a}\frac{1}{iksin\theta}(e^{-ikasin\theta}) - \frac{\alpha}{a^2}\frac{1}{k^2sin^2\theta}e^{-\frac{3}{2}ikasin\theta}[e^{\frac{-ikasin\theta}{2}} - e^{\frac{ikasin\theta}{2}}]
\frac{\alpha}{a}\frac{1}{iksin\theta}e^{-ikasin\theta} - \frac{\alpha}{a^2}\frac{1}{k^2sin^2\theta} e^{\frac{=3ikasin\theta}{2}} -2i sin (\frac{ka sin\theta}{2})
= \frac{-\alpha}{a}\frac{i}{ksin\theta} e^{-ikasin\theta} + \frac{2\alpha}{a^2}\frac{i}{k^2sin^2\theta} e^{\frac{-3ikasin\theta}{2}} sin(\frac{ka sin \theta}{2})

Adding the first and second integral and then multiplying it by its complex conjugate takes me nowhere..

Part(b)

wloeq1.png


I'm definitely going with the convolution method with this one.

Let ##V_c = \frac{1}{2a}## for -2a < y < a and 0 < y < a.

Fourier transform of ##V_c##=
\alpha \int_{-2a}^a \frac{1}{2a} e^{-i\beta y} dy + \alpha \int_0^a \frac{1}{2a} e^{-i\beta y} dy

Second integral is simply ## \frac{1}{2} \alpha e^{\frac{-i\beta a}{2}} \frac{sin ( \frac{\beta a}{2})}{\frac{\beta a}{2}}##

First Integral:

\frac{\alpha}{2a}\int_{-2a}^{a} e^{-i\beta b} dy
= \frac{\alpha}{2a\beta i}[e^{-i\beta y}]_a^{-2a}
= \frac{\alpha}{2a\beta i} e^{\frac{i\beta a}{2}} [e^{\frac{3i\beta a}{2} - e^{\frac{-3i\beta a}{2}}}]
= \frac{3}{2} \alpha e^{\frac{i\beta a}{2}} \frac{sin (\frac{3}{2}\beta a)}{\frac{3}{2}\beta a}

Adding both integrals and multiplying them with its complex conjugate:

|A_{\theta}|^2 = \left(\frac{9}{4}\alpha^2\right) \frac{sin^2 (\frac{3}{2}\beta a)}{(\frac{3}{2}\beta a)^2} + \left(\frac{\alpha^2}{4}\right) \frac{sin^2 (\frac{\beta a}{2})}{(\frac{\beta a}{2})^2} + \frac{3}{2} cos (\beta a) \alpha^2 \frac{sin (\frac{3}{2}\beta a)}{(\frac{3}{2}\beta a)} \frac{sin(\frac{\beta a}{2})}{(\frac{\beta a}{2})}

First minimum occurs when ##\beta = \pi##, but due to the presence of the cross-term, it is non-zero. Is this explanation right?
 
Last edited:
Physics news on Phys.org
bumpp
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top