unscientific
- 1,728
- 13
Homework Statement
Part (a): Find the intensity as function of ##\theta## and sketch it.
Part (b): Find the intensity as function of ##\theta## and sketch it. Comment on first minima.
Homework Equations
The Attempt at a Solution
Part(a)
Convolution Method
V_b = \frac{1}{2a}, 0 \leq y \leq a
The convolution ##V_b \otimes V_b ## gives the angular distribution ##V_{b(\beta)}##
Fourier transform of ##V_b##:
\alpha \int_0^{\infty} \frac{1}{2a} e^{-i\beta y} dy
= \frac{\alpha}{2ai\beta}[e^{-i\beta y}]_a^0
= \frac{\alpha}{2ai\beta} [1 - e^{-i\beta a}]
= \frac{1}{2} \alpha e^{\frac{-i\beta a}{2}} \frac{sin ( \frac{\beta a}{2})}{\frac{\beta a}{2}}
|A_{\theta}|^2 = \frac {1}{4} \alpha^2 \frac{sin^2(\beta')}{\beta'^2} = I_0 \frac{sin^2(\beta')}{\beta'^2}
Analytical Method
A_{\theta} = \alpha \int_{-\infty}^{\infty} T_y e^{-iky sin {\theta}} dy
For 0 < y < a:
T_y = \frac{1}{a^2}
For a < y < 2a:
T_y = -\frac{1}{a^2}y + \frac{2}{a}
A_{\theta} = \alpha \int_0^a \frac{1}{a^2} e^{-ikysin\theta} dy + \alpha \int_a^{2a} \left (-\frac{1}{a^2}y + \frac{2}{a}\right )e^{-ikysin\theta} dy
First Integral:
\alpha \int_0^a \frac{1}{a^2} e^{-ikysin\theta} dy
= \alpha \frac{1}{a^2} \frac{1}{iksin\theta} [e^{-ikysin\theta}]_a^0
= \frac{\alpha}{a^2}\frac{1}{iksin\theta}\left (1 - e^{-ikasin\theta}\right )
Second Integral:
\alpha \int_a^{2a} \left (-\frac{1}{a^2}y + \frac{2}{a}\right )e^{-ikysin\theta} dy
=\frac{-\alpha}{a^2}\int_a^{2a} y e^{-ikysin\theta} dy + \frac{2\alpha}{a}\int_a^{2a}e^{-ikysin\theta} dy
=\frac{-\alpha}{a^2}\{ \frac{1}{iksin\theta}[y e^{-ikysin\theta}]_{2a}^a + \frac{1}{iksin\theta}\int_a^{2a} e^{-ikysin\theta} dy \} + \frac{2\alpha}{a} \frac{1}{iksin\theta} [e^{-ikysin\theta}]_{2a}^a
=\frac{-\alpha}{a} \frac{1}{iksin\theta}[e^{-ikasin\theta} - 2e^{-2ikasin\theta}] - \frac{\alpha}{a^2} \frac{1}{k^2sin^2\theta}[e^{-ikysin\theta}]_a^{2a} + \frac{2\alpha}{a}\frac{1}{iksin\theta} [e^{-ikasin\theta} - e^{-2ikasin\theta}]
= -\frac{\alpha}{a}\frac{1}{iksin\theta}[e^{-ikasin\theta} - 2e^{-2ikasin\theta}] - \frac{\alpha}{a^2} \frac{1}{k^2sin^2\theta}[e^{-2ikasin\theta} - e^{-ikasin\theta}] + \frac{2\alpha}{a^2}\frac{1}{iksin\theta}[e^{-ikasin\theta} - e^{-2ikasin\theta}]
= \frac{\alpha}{a}\frac{1}{iksin\theta}(e^{-ikasin\theta}) - \frac{\alpha}{a^2}\frac{1}{k^2sin^2\theta}e^{-\frac{3}{2}ikasin\theta}[e^{\frac{-ikasin\theta}{2}} - e^{\frac{ikasin\theta}{2}}]
\frac{\alpha}{a}\frac{1}{iksin\theta}e^{-ikasin\theta} - \frac{\alpha}{a^2}\frac{1}{k^2sin^2\theta} e^{\frac{=3ikasin\theta}{2}} -2i sin (\frac{ka sin\theta}{2})
= \frac{-\alpha}{a}\frac{i}{ksin\theta} e^{-ikasin\theta} + \frac{2\alpha}{a^2}\frac{i}{k^2sin^2\theta} e^{\frac{-3ikasin\theta}{2}} sin(\frac{ka sin \theta}{2})
Adding the first and second integral and then multiplying it by its complex conjugate takes me nowhere..
Part(b)
I'm definitely going with the convolution method with this one.
Let ##V_c = \frac{1}{2a}## for -2a < y < a and 0 < y < a.
Fourier transform of ##V_c##=
\alpha \int_{-2a}^a \frac{1}{2a} e^{-i\beta y} dy + \alpha \int_0^a \frac{1}{2a} e^{-i\beta y} dy
Second integral is simply ## \frac{1}{2} \alpha e^{\frac{-i\beta a}{2}} \frac{sin ( \frac{\beta a}{2})}{\frac{\beta a}{2}}##
First Integral:
\frac{\alpha}{2a}\int_{-2a}^{a} e^{-i\beta b} dy
= \frac{\alpha}{2a\beta i}[e^{-i\beta y}]_a^{-2a}
= \frac{\alpha}{2a\beta i} e^{\frac{i\beta a}{2}} [e^{\frac{3i\beta a}{2} - e^{\frac{-3i\beta a}{2}}}]
= \frac{3}{2} \alpha e^{\frac{i\beta a}{2}} \frac{sin (\frac{3}{2}\beta a)}{\frac{3}{2}\beta a}
Adding both integrals and multiplying them with its complex conjugate:
|A_{\theta}|^2 = \left(\frac{9}{4}\alpha^2\right) \frac{sin^2 (\frac{3}{2}\beta a)}{(\frac{3}{2}\beta a)^2} + \left(\frac{\alpha^2}{4}\right) \frac{sin^2 (\frac{\beta a}{2})}{(\frac{\beta a}{2})^2} + \frac{3}{2} cos (\beta a) \alpha^2 \frac{sin (\frac{3}{2}\beta a)}{(\frac{3}{2}\beta a)} \frac{sin(\frac{\beta a}{2})}{(\frac{\beta a}{2})}
First minimum occurs when ##\beta = \pi##, but due to the presence of the cross-term, it is non-zero. Is this explanation right?
Last edited: