Convolution, Triangle Function

Click For Summary
SUMMARY

This discussion focuses on the convolution method and analytical method for calculating intensity as a function of angle (##\theta##) in the context of wave interference. The convolution of two functions, ##V_b## and ##V_c##, is utilized to derive angular distributions, leading to expressions for intensity involving sine functions and Fourier transforms. Key results include the intensity equations: |Aθ|² = I0 sin²(β')/β'² for the first part and a more complex expression for the second part that includes cross-terms affecting the minima. The first minimum occurs at ##\beta = \pi##, but the presence of cross-terms results in a non-zero intensity.

PREREQUISITES
  • Understanding of convolution in signal processing
  • Familiarity with Fourier transforms and their applications
  • Knowledge of wave interference principles
  • Basic calculus for evaluating integrals
NEXT STEPS
  • Study the properties of Fourier transforms in signal analysis
  • Learn about wave interference patterns and their mathematical descriptions
  • Explore advanced convolution techniques in physics
  • Investigate the implications of cross-terms in interference patterns
USEFUL FOR

Students and researchers in physics, particularly those focusing on wave mechanics, signal processing, and mathematical methods in physics.

unscientific
Messages
1,728
Reaction score
13

Homework Statement



2ppyav6.png


Part (a): Find the intensity as function of ##\theta## and sketch it.

Part (b): Find the intensity as function of ##\theta## and sketch it. Comment on first minima.

Homework Equations


The Attempt at a Solution



Part(a)

Convolution Method

6s59av.png


V_b = \frac{1}{2a}, 0 \leq y \leq a

The convolution ##V_b \otimes V_b ## gives the angular distribution ##V_{b(\beta)}##

Fourier transform of ##V_b##:

\alpha \int_0^{\infty} \frac{1}{2a} e^{-i\beta y} dy
= \frac{\alpha}{2ai\beta}[e^{-i\beta y}]_a^0
= \frac{\alpha}{2ai\beta} [1 - e^{-i\beta a}]
= \frac{1}{2} \alpha e^{\frac{-i\beta a}{2}} \frac{sin ( \frac{\beta a}{2})}{\frac{\beta a}{2}}
|A_{\theta}|^2 = \frac {1}{4} \alpha^2 \frac{sin^2(\beta')}{\beta'^2} = I_0 \frac{sin^2(\beta')}{\beta'^2}

1zxo41h.png


Analytical Method

A_{\theta} = \alpha \int_{-\infty}^{\infty} T_y e^{-iky sin {\theta}} dy

For 0 < y < a:
T_y = \frac{1}{a^2}

For a < y < 2a:
T_y = -\frac{1}{a^2}y + \frac{2}{a}

A_{\theta} = \alpha \int_0^a \frac{1}{a^2} e^{-ikysin\theta} dy + \alpha \int_a^{2a} \left (-\frac{1}{a^2}y + \frac{2}{a}\right )e^{-ikysin\theta} dy

First Integral:

\alpha \int_0^a \frac{1}{a^2} e^{-ikysin\theta} dy
= \alpha \frac{1}{a^2} \frac{1}{iksin\theta} [e^{-ikysin\theta}]_a^0
= \frac{\alpha}{a^2}\frac{1}{iksin\theta}\left (1 - e^{-ikasin\theta}\right )

Second Integral:

\alpha \int_a^{2a} \left (-\frac{1}{a^2}y + \frac{2}{a}\right )e^{-ikysin\theta} dy
=\frac{-\alpha}{a^2}\int_a^{2a} y e^{-ikysin\theta} dy + \frac{2\alpha}{a}\int_a^{2a}e^{-ikysin\theta} dy
=\frac{-\alpha}{a^2}\{ \frac{1}{iksin\theta}[y e^{-ikysin\theta}]_{2a}^a + \frac{1}{iksin\theta}\int_a^{2a} e^{-ikysin\theta} dy \} + \frac{2\alpha}{a} \frac{1}{iksin\theta} [e^{-ikysin\theta}]_{2a}^a
=\frac{-\alpha}{a} \frac{1}{iksin\theta}[e^{-ikasin\theta} - 2e^{-2ikasin\theta}] - \frac{\alpha}{a^2} \frac{1}{k^2sin^2\theta}[e^{-ikysin\theta}]_a^{2a} + \frac{2\alpha}{a}\frac{1}{iksin\theta} [e^{-ikasin\theta} - e^{-2ikasin\theta}]
= -\frac{\alpha}{a}\frac{1}{iksin\theta}[e^{-ikasin\theta} - 2e^{-2ikasin\theta}] - \frac{\alpha}{a^2} \frac{1}{k^2sin^2\theta}[e^{-2ikasin\theta} - e^{-ikasin\theta}] + \frac{2\alpha}{a^2}\frac{1}{iksin\theta}[e^{-ikasin\theta} - e^{-2ikasin\theta}]
= \frac{\alpha}{a}\frac{1}{iksin\theta}(e^{-ikasin\theta}) - \frac{\alpha}{a^2}\frac{1}{k^2sin^2\theta}e^{-\frac{3}{2}ikasin\theta}[e^{\frac{-ikasin\theta}{2}} - e^{\frac{ikasin\theta}{2}}]
\frac{\alpha}{a}\frac{1}{iksin\theta}e^{-ikasin\theta} - \frac{\alpha}{a^2}\frac{1}{k^2sin^2\theta} e^{\frac{=3ikasin\theta}{2}} -2i sin (\frac{ka sin\theta}{2})
= \frac{-\alpha}{a}\frac{i}{ksin\theta} e^{-ikasin\theta} + \frac{2\alpha}{a^2}\frac{i}{k^2sin^2\theta} e^{\frac{-3ikasin\theta}{2}} sin(\frac{ka sin \theta}{2})

Adding the first and second integral and then multiplying it by its complex conjugate takes me nowhere..

Part(b)

wloeq1.png


I'm definitely going with the convolution method with this one.

Let ##V_c = \frac{1}{2a}## for -2a < y < a and 0 < y < a.

Fourier transform of ##V_c##=
\alpha \int_{-2a}^a \frac{1}{2a} e^{-i\beta y} dy + \alpha \int_0^a \frac{1}{2a} e^{-i\beta y} dy

Second integral is simply ## \frac{1}{2} \alpha e^{\frac{-i\beta a}{2}} \frac{sin ( \frac{\beta a}{2})}{\frac{\beta a}{2}}##

First Integral:

\frac{\alpha}{2a}\int_{-2a}^{a} e^{-i\beta b} dy
= \frac{\alpha}{2a\beta i}[e^{-i\beta y}]_a^{-2a}
= \frac{\alpha}{2a\beta i} e^{\frac{i\beta a}{2}} [e^{\frac{3i\beta a}{2} - e^{\frac{-3i\beta a}{2}}}]
= \frac{3}{2} \alpha e^{\frac{i\beta a}{2}} \frac{sin (\frac{3}{2}\beta a)}{\frac{3}{2}\beta a}

Adding both integrals and multiplying them with its complex conjugate:

|A_{\theta}|^2 = \left(\frac{9}{4}\alpha^2\right) \frac{sin^2 (\frac{3}{2}\beta a)}{(\frac{3}{2}\beta a)^2} + \left(\frac{\alpha^2}{4}\right) \frac{sin^2 (\frac{\beta a}{2})}{(\frac{\beta a}{2})^2} + \frac{3}{2} cos (\beta a) \alpha^2 \frac{sin (\frac{3}{2}\beta a)}{(\frac{3}{2}\beta a)} \frac{sin(\frac{\beta a}{2})}{(\frac{\beta a}{2})}

First minimum occurs when ##\beta = \pi##, but due to the presence of the cross-term, it is non-zero. Is this explanation right?
 
Last edited:
Physics news on Phys.org
bumpp
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
987
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K