Benefits of time dilation / length contraction pairing?

In summary, there is often confusion about the use of time dilation and length contraction in regards to frames in motion. These concepts are consequences of the Lorentz transformation and Einstein's SR postulates. While there may be some inconsistency in the use of primes in equations, the frames are actually consistent and explain a variety of empirical observations. However, there may be a more intuitive way to express these concepts that would not lead to confusion. The use of time dilation and length contraction may have a historical and practical significance, but it is important to understand the fundamental theory in order to fully grasp their utility.
  • #106
Mentz114 said:
neopolitan;
no, I don't have a thing about muons. I did not introduce the subject so your comment makes no sense. You give the impression that muons can't have a frame of reference, in which you are wrong. I'm trying to shine some light here into your fog of misunderstanding, and you respond with insults and sarcasm.

I enjoyed your little biog about talking to people ( Professors even ) about your doubts and problems with relativity. I hope you get cured soon because it's costing some people an awful lot of effort.

M

Actually, if you read the text around the comment I made about not being able to be muon, you will see that it was made in the context of a decision about which frame to use. Most readers would be able to interpret from that that I did realize that the muon had a frame of reference. The laboratory frame is a sensible frame. It's not the only frame.

I accept that I may have misunderstandings, but shining light on the blindingly obvious it not helping anyone.

You clearly don't understand the message behind my story about speaking to various people about some "doubts and problems".

As to being cured of my curiosity, did you never have it, or were you cured? (:smile:)

Mentz, I know you are curious, I know you think I am obsessing on an unimportant detail. But equally I think you were obsessing on an unimportant detail regarding the muons. It wasn't even me who introduced them. It was BobS. I just thought he raised an interesting and useful real world example.

cheers,

neopolitan
 
Physics news on Phys.org
  • #107
JesseM said:
neopolitan said:
If you want to use the clock in the laboratory you as your reference point, you have to do this:

While a photon in the laboratory moves between mirrors, traveling 660km in 2.2ms - what happens to a photon which is at gamma of 29.3?

If 2.2ms has elapsed in the laboratory, then a period of 2.2ms/29.3 = 75μs will have elapsed in the rest frame of the test clock (the one accelerated to gamma of 29.3).

No, 75 microseconds would represent how much time has elapsed on the test clock (if the test clock had closer mirrors so it could show time-intervals that small) in 2.2 ms of time in the lab frame. In the test clock's own frame, it's the lab clock that's running slow relative to the test clock, so when the lab clock has ticked forward 2.2 ms, the test clock has ticked forward 64.4 ms.

My fault. I was not clear about photons. It took a moment to see where you didn't agree since you seemed to be saying exactly the same as I said in my quote.

While a photon in the laboratory (in the laboratory light clock) moves between mirrors, traveling 660km in 2.2ms - what happens to a photon in the test frame light clock which is at gamma of 29.3?

The light clock in the test frame is at gamma of 29.3 (it makes no sense to talk about a photon at gamma of 29.3).

Thinking about the light clock in the test frame, while 2.2ms has elapsed in the laboratory (one full in-laboratory tick-tick), the photon has traveled 1/29.3 of the distance it needs to travel for the clock to go through a full tick to tick sequence, which, according the laboratory, is 660km*29.3. According to the laboratory, the photon in the test frame's clock has traveled 660km in 2.2ms. According to the laboratory, the photon in the laboratory frame's clock has traveled 660km in 2.2ms. According to the laboratory, both photons have traveled 600km in 2.2ms.

According to the test frame, what the laboratory frame "thinks" is 660km is actually 660km/29.3 and what the laboratory frame "thinks" is 2.2ms is actually 2.2ms/29.3.

(Aside: You can go through the last two paragraphs and swap the words "test" and "laboratory". The arguments would be the same. To reconcile the different views, you have to use relativity of simultaneity concepts. You shouldn't necessarily forget this next step, but at the moment, it is not necessary.)


If you want to call L'/t' LAFTD/time dilation that is fine. I do see here that that makes sense. But I also see that L'/t' length contraction/TAFLC makes equal sense. (Note that above I have not defined any primed frame or any unprimed frame.)

(660km * 29.3) / (2.2ms * 29.3) = (660km) / (2.2ms) = (660km / 29.3) / (2.2ms / 29.3) = 300000 km/s

So long as no matter what frame you view it from, the photon travels a distance of ct in t and a distance of ct' in t', I am happy - irrespective of how you want to link t and t'.

I prefer keeping in mind that lengths which are not at rest with respect to my rest frame are contracted. So I do prefer "length contraction/TAFCL" (or if you must, you can call it "length contraction/inverse time dilation" but I don't like it, because I interpret time dilation as talking about what happens between two full ticks, not about measured time, eg numbers of ticks or number of graduations between ticks).

You might prefer to think about the fact that compared to your clock, the period between ticks of a clock in motion with respect to you is longer. (Or whatever physical definition you ascribe to time dilation, the point is that you may prefer to keep the time dilation equation whereas I prefer to keep the length contraction equation.)

There is subtle difference in approaches which might be illustrative to highlight. You are focussed very much on the relativity (which is the bit I coloured silver above, so you have to select it to read it). I am focussed very much on the effects of on something which is in motion relative to me or some impartial observer.

Relativity says two things:

Something that is in motion relative to me will be length contracted and experience less time than me, relative to me.

and

The reverse is true, relative to that something.

I am really only looking at the first part, because I know the second part is true, but not terribly useful for working out the extent of that contraction and reduction of time experienced.

You seem to be unable to put that second part aside for a moment, perhaps because you think I think it isn't true. I do think it is true, just not currently helpful (as was the fact that muons have mass as Mentz will have us know, true but not actually helpful).

Again, I hope this helps.

cheers,

neopolitan
 
Last edited:
  • #108
neopolitan said:
There have been more than a few threads where there clearly is confusion about the use of time dilation and length contraction.

People initially think that:

1. in an frame which is in motion relative to themselves, time dilates and lengths contract; and
2. velocities in a frame which is in motion relative to themselves are contracted lengths divided by dilated time.

I admit that it stumped me for a long time, because of what I see as inconsistent use of primes and for me a much more useful pair of equations would have a more consistent use of primes, similar to the Lorentz transformations.

I was told during a long discussion that time dilation and length contraction are used, even though they pertain to different frames, because they have greater utility. I took that at face value, but now I wonder again.

What exactly is the greater utility of time dilation and length contraction equations which prevents the use of two contraction equations which would do away with the confusion I mentioned above?

(And by the way, introducing arguments that t in time dilation is the period between tick and tock doesn't really help, because this is more indicative of the confusion since we use clocks everyday to measure the time between events in terms of the number of ticks and tocks rather than in terms of the duration of pause between each tick and tock. Reinterpreting how we use time to make the equation work is not indicative of any greater utility.)

If it is a purely historical thing, then I would be far happier with it if that little tidbit were taught at the same time as the equations are introduced. But it isn't.

There is also the potential argument that they are only useful right at the beginning of one's odyssey into relativity, so it doesn't really matter. Sure, ok, then it doesn't matter if you use a more intuitive pairing does it?

Bottom line: what is so great with time dilation?

cheers,

neopolitan
Is
(T0/T)(L/L0=1 an important consequence?
I think that all we discuss there is a conswequence of the standard clock synchronization and of the measurement procedures. In general we ca have length contraction, length dilation and no disrtion at all.
 
  • #109
JesseM said:
Yes, although your "inverse question" corresponds to the normal time dilation equation (with the most common notation being to use a primed t' where you've used an unprimed t, and an unprimed t where you've used ), whereas your first question corresponds to what I've called the "reversed time dilation equation" (where you just divide both sides of the normal time dilation equation by gamma).

Given that this was my attempt at paraphrasing your definition of TAFLC and its inverse (hence the choice of primed and unprimed), I guess that shows I’m still having trouble separating these concepts of TAFLC and inverse time dilation.

JesseM said:
(time between events in frame where they are not colocated) = (time between events in frame where they are colocal) * gamma

And (space between events in a frame where they are not simultaneous) = (space between events in a frame where they are simultaneous) * gamma. What does this tell us about the length of an object: if I measure a moving object, this is how long it would be if measured in its rest frame?

JesseM said:
(time between events in frame where they are colocal) = (time between events in frame where they are not colocated) / gamma

And (space between events in a frame where they are simultaneous) = (space between events in a frame where they are not simultaneous) / gamma. This being length contraction.

JesseM said:
...the concept of the length of an object in different frames is quite different from the concept of the spatial distance between a pair of events in different frames).

I wonder if this is the crucial factor in how the apparent asymmetry comes about between time dilation and length contraction? When the concepts are introduced, in a way that makes one seem somehow parallel to the other, it’s so easy to jump to that conclusion. So would it be correct to say that the ends of an object aren’t events, but that each end of an object occupying some specific location at some specific time does comprise an event (a different event in the case of each end)?

JesseM said:
So the way I would conceptualize this situation is to say that in order to talk about any of these equations, you first have to specify a single pair of events you want to talk about, and then in terms of those specific events the time dilation and reversed time dilation equations tell you everything you want to know about the time interval between the events in two frames (one of which is the one where they're colocated), whereas in terms of those events the TAFLC is telling you something more abstract about the time-interval (in the frame where the events are not colocated) between surfaces of simultaneity from the frame where the events are colocated. Of course you could start with a new pair of events so that the time interval given by the TAFLC applied to the previous events is just the time interval between the new events in the frame where they're colocated, but then you're really talking about the reversed time dilation equation for these new pair of events, not the TAFLC for them.

But if we think of, say, the time dilation equation as a function [tex]f(t) = t * \gamma[/tex] which takes as its input some time, and gives as its output some other time, this function has an inverse [tex]f^{-1}(t) = t / \gamma[/tex], the inverse being also a function over t, the real valued set of all possible time intervals, we can conceptualise both functions as abstract entities, without specifying any particular events until we actually want to calculate something about particular events. In the abstract, they’re functions that tell you something about *any* pair of events. As such, until the events are specified one way or the other--aside from matters of frame-labelling convention--aren’t TAFLC and reverse TD equivalent? And when we do want to specify a pair of events, what’s the difference between performing the same mathematical operation on the same values whether you call it “start[ing] with a new pair of events” or letting the equation tell you about a new pair of events, since, in the latter way of conceptualising it, the events would still be specified uniquely by the question, wouldn't they? (Namely the equation chosen and the value plugged into it.)

JesseM said:
But what do you mean by "both types of questions"? What events are you asking questions about?

I meant questions of the type answered by the traditional time dilation equation (or equivalently, I assumed, reverse TAFLC) versus questions of the type answered by reverse time dilation (or equivalenty, I assumed, TAFLC), regardless of how the frames are labelled. Of course, I could well be mistaken to assume that equivalence.

(1) “In Alice’s rest frame, what time on Bob’s watch is simultaneous with Alice’s 4?” Answer: [tex]t_{B} = t_{A} / \gamma[/tex] = 3.2. What do we call this: time contraction, temporal analogue of length contraction, reverse time dilation?

(2) “In Bob’s rest frame, what time on Bob’s watch is simultaneous with Alice’s 4?” Answer [tex]t_{B} * \gamma[/tex] = 5. Time dilation, right? Or is it reversed TAFLC?

JesseM said:
If you're asking about more than a single pair of events then in that case I'd agree you might use both of those equations to talk about time intervals between events...

Yes, I can see that if you input the same (nonzero) value into these two equations, you’d be talking about more than a single pair of events.

JesseM said:
...but since you're no longer talking about a single pair of events you'd have to have some different notation to distinguish between verbal formulations like "time-interval in the unprimed frame between events A and B" and "time-interval in the unprimed frame between events C and D"--perhaps you could use [tex]\Delta t_{AB}[/tex] and [tex]\Delta t_{AC}[/tex] in this case. Then if A and B are colocated in the primed frame while C and D are colocated in the unprimed frame, you might write [tex]\Delta t’_{AB} = \Delta t_{AB} / \gamma[/tex] along with [tex]\Delta t_{CD} = \Delta t’_{CD} / \gamma[/tex], but I would refer to the first as "the reversed time dilation equation for events A and B" and the second as "the reversed time dilation equation for events C and D", in words they would both come out to:

(time between specified events in frame where they are colocated) = (time between specified events in frame where they are not colocated) / gamma

So what, if anything, in this situation would you describe as TAFLC? Thanks for your patience, by the way, and sorry if I'm repeating myself or demanding answers to questions you've already answered in detail. Perhaps it'll become clearer to me once I've solved some more problems and got a bit more experience of the sort of questions these concepts are used to deal with, and when I've looked more at time dilation and length contraction in the wider context of the Lorentz transformation and spacetime geometry.
 
  • #110
bernhard.rothenstein said:
Is
(T0/T)(L/L0=1 an important consequence?
I think that all we discuss there is a conswequence of the standard clock synchronization and of the measurement procedures. In general we ca have length contraction, length dilation and no disrtion at all.

It depends a little on what Lo and To are.

I am tempted to think (using standard pairing, time dilation and length contraction):

T = To * gamma
L = Lo / gamma

so:

To / T = 1 / gamma
L / Lo = 1 / gamma

so:

(To / T)(L / Lo) = 1 /(gamma)2

Which is partly why I question it.

Rearranging (To / T)(L / Lo) = 1 gives you:

(To / Lo)(L / T) = 1

or

L / T = Lo / To

Which I think is an important consequence. In much later posts we are nearing a resolution ... maybe :)

For me that discussion could revolve, conceptually, around what a photon does traveling along between two events (but I stress that it doesn't have to). In one frame, it could be said that that photon travels L in time T (so L/T=c). In another frame, it could be said that that same photon travels Lo or L' in time To or T' (so that Lo/To=c or L'/T'=c).

cheers,

neopolitan
 
  • #111
neopolitan said:
It depends a little on what Lo and To are.

I am tempted to think (using standard pairing, time dilation and length contraction):

T = To * gamma
L = Lo / gamma

so:

To / T = 1 / gamma
L / Lo = 1 / gamma

so:

(To / T)(L / Lo) = 1 /(gamma)2

Which is partly why I question it.

Rearranging (To / T)(L / Lo) = 1 gives you:

(To / Lo)(L / T) = 1

or

L / T = Lo / To

Which I think is an important consequence. In much later posts we are nearing a resolution ... maybe :)

For me that discussion could revolve, conceptually, around what a photon does traveling along between two events (but I stress that it doesn't have to). In one frame, it could be said that that photon travels L in time T (so L/T=c). In another frame, it could be said that that same photon travels Lo or L' in time To or T' (so that Lo/To=c or L'/T'=c).

cheers,

neopolitan
Thank you for your answer. The last case you mention is very interesting, because length and time intervals are related by the Doppler factor in an electromagnetic wave. The light signal generates in I the event (x;ct) whereas in I' the event (x';ct'). The cortresponding Lorentz transformations lead to
x'=g(x-Vt)=gx(1-V/c)
t'=g(t-Vx/cc)=gt(1-V/c)
g standing for the Lorentz factor.
Kind regards
 
  • #112
[tex]\mathbf{t'}=\mathbf{t}\cosh(\beta)+\mathbf{x}\sinh(\beta)[/tex]
[tex]\mathbf{x'}=\mathbf{x}\cosh(\beta)+\mathbf{t}\sinh(\beta)[/tex]

What more needs to be said ?
 
  • #113
Mentz114 said:
[tex]\mathbf{t'}=\mathbf{t}\cosh(\beta)+\mathbf{x}\sinh(\beta)[/tex]
[tex]\mathbf{x'}=\mathbf{x}\cosh(\beta)+\mathbf{t}\sinh(\beta)[/tex]

What more needs to be said ?

Mentz old boy,

You are clearly extremely intelligent, very highly educated and totally untroubled by curiosity not to mention modest. Most of the rest of us would need more than those equations during our years of education even you are able to deduce all that needs to known from them.

Would you replace time dilation and length contraction with those equations? Do you suggest that presenting the new student with those equations would inform them or are you just planning to bludgeon them into conformity?

Since you seem to have said all that needs to be said, I do hope you don't plan to say any more. I am happy for you to leave to my rhetorical questions unaddressed.

cheers,

neopolitan
 
  • #114
Mentz114 said:
[tex]\mathbf{t'}=\mathbf{t}\cosh(\beta)+\mathbf{x}\sinh(\beta)[/tex]
[tex]\mathbf{x'}=\mathbf{x}\cosh(\beta)+\mathbf{t}\sinh(\beta)[/tex]

What more needs to be said ?
I think that in order to help the learner there are a lot of thinks which should be mentioned.
1. Length contraction is obtained from the Lorentz transformations if in one of the involved inertial frames a simultaneous detection of the moving rod is performed. Recent papers have shown that the same result could be obtained without imposing the mentioned condition.
2. Time dilation is obtained if in one of the involved inertial frame a proper time interval is measured.
3. Time dilation and length contraction could be derived from thought experiments and that makes the beauty of teching relativity to beginners.
4. If the clocks of the involved inertial frames are standard synchronized there is no time dilation without length contraction.
Kind regards
 
  • #115
neopolitan said:
Mentz old boy,

You are clearly extremely intelligent, very highly educated and totally untroubled by curiosity not to mention modest. Most of the rest of us would need more than those equations during our years of education even you are able to deduce all that needs to known from them.

Would you replace time dilation and length contraction with those equations? Do you suggest that presenting the new student with those equations would inform them or are you just planning to bludgeon them into conformity?

Since you seem to have said all that needs to be said, I do hope you don't plan to say any more. I am happy for you to leave to my rhetorical questions unaddressed.

cheers,

neopolitan
Thanks.

Would you replace time dilation and length contraction with those equations?
Those equations are length contraction and time dilation.
Do you suggest that presenting the new student with those equations would inform them or are you just planning to bludgeon them into conformity?
This remark first presupposes something then makes a damning inference. Ungentlemanly and very rude.

I am happy for you to leave to my rhetorical questions unaddressed.
Please look up the meaning of 'rhetorical'. Surely you wanted someone to respond.

Please, cut out the personal stuff, ironic or not.
 
Last edited:
  • #116
bernhard.rothenstein said:
I think that in order to help the learner there are a lot of things which should be mentioned.
1. Length contraction is obtained from the Lorentz transformations if in one of the involved inertial frames a simultaneous detection of the moving rod is performed. Recent papers have shown that the same result could be obtained without imposing the mentioned condition.
2. Time dilation is obtained if in one of the involved inertial frame a proper time interval is measured.
3. Time dilation and length contraction could be derived from thought experiments and that makes the beauty of teching relativity to beginners.
4. If the clocks of the involved inertial frames are standard synchronized there is no time dilation without length contraction.
Kind regards
Bernhard,
I'm sure you're a dedicated and earnest teacher of the subject, but do beginners have to go into SR as deeply as you enjoy going ?

M
 
  • #117
Mentz,

The equations you provided would not help the new student to SR to understand the physical significance of the standard time dilation and length contraction equations that they are normally presented with.

I am pretty sure that they would confuse. It seems to have confused either you or the author of this site on http://hubpages.com/hub/Hyperbolic-Functions" .

On his site, time dilation is given by cosh u (probably cosh [tex]\beta[/tex] of your equation set, but since you did not define [tex]\beta[/tex], I don't know).

In the same vein, length contraction (he calls it spatial contraction) is given by sech u (again probably sech [tex]\beta[/tex]).

He shows you graphically what u is in his equations (the area between the asymptote and the x axis). He also clarifies that sech u is the reciprocal of cosh u.

That is slightly more helpful.

I expect that the equation pair you gave really represents the Lorentz Transformations, but in a format which is far less intuitively comprehensible to the new student. I suspect that the equation pair requires you to make reference to the function under which the area [tex]\beta[/tex] is found, namely S2 = x2 - (ct)2 and that where you have written t, you should have written (ct).

But all of this is extraneous to what we were discussing.

cheers,

neopolitan
 
Last edited by a moderator:
  • #118
neopolitan said:
There have been more than a few threads where there clearly is confusion about the use of time dilation and length contraction.

People initially think that:

1. in an frame which is in motion relative to themselves, time dilates and lengths contract; and
2. velocities in a frame which is in motion relative to themselves are contracted lengths divided by dilated time.

I admit that it stumped me for a long time, because of what I see as inconsistent use of primes and for me a much more useful pair of equations would have a more consistent use of primes, similar to the Lorentz transformations.

I was told during a long discussion that time dilation and length contraction are used, even though they pertain to different frames, because they have greater utility. I took that at face value, but now I wonder again.

What exactly is the greater utility of time dilation and length contraction equations which prevents the use of two contraction equations which would do away with the confusion I mentioned above?

(And by the way, introducing arguments that t in time dilation is the period between tick and tock doesn't really help, because this is more indicative of the confusion since we use clocks everyday to measure the time between events in terms of the number of ticks and tocks rather than in terms of the duration of pause between each tick and tock. Reinterpreting how we use time to make the equation work is not indicative of any greater utility.)

If it is a purely historical thing, then I would be far happier with it if that little tidbit were taught at the same time as the equations are introduced. But it isn't.

There is also the potential argument that they are only useful right at the beginning of one's odyssey into relativity, so it doesn't really matter. Sure, ok, then it doesn't matter if you use a more intuitive pairing does it?

Bottom line: what is so great with time dilation?

cheers,

neopolitan
What is so great with time dilation?
1. In teaching it can be derived from the two postulates and from Pythagoras' throrem.
2. It leads directly to length contraction.
3. Length contraction leads directly to the Lorentz transformations.
4. Lorentz transformation lead directly to the formulas that account for all the formulas we encounter in special relativity theory.
Is there to say when it is about its benefits?
 
  • #119
bernhard.rothenstein said:
What is so great with time dilation?
1. In teaching it can be derived from the two postulates and from Pythagoras' throrem.
2. It leads directly to length contraction.
3. Length contraction leads directly to the Lorentz transformations.
4. Lorentz transformation lead directly to the formulas that account for all the formulas we encounter in special relativity theory.
Is there to say when it is about its benefits?

I think you are talking about the light clock? or something similar? Someone else stated recently on a thread hereabouts that the light clock derivation has weaknesses. I would think anything similar has similar weaknesses.

The confusion I see comes after getting the students to get shown how time dilation is derived but no clarification is given along the lines that you can't take a contracted length and a dilated time to get a speed which the postulates you started with said was invariant.

Most students won't think more deeply than is required to pass the test and so will learn very little.

Others will instinctively grasp what has not been clarified.

Some, perhaps only a few, will be left with a vague unease because if L and t are such that L/t=c then L'/t' is not c.

I do think that we can derive the Lorentz transformations without even stopping at length contraction and time dilation. Lorentz seemed to and you can go directly from Galilean boosts to Lorentz transformations without having previously derived length contraction or time dilation, you just remove the assumption of instantaneous information transfer and use the first postulate. The second postulate falls out as a consequence.

I'd be happy to dispense with time dilation and length contraction altogether, and just go with Lorentz transformations, as Mentz possibly meant in an earlier post. But this is not the standard approach. Additionally, I would clarify just what it is that the Lorentz transformations can tell you, because if you just plug in t=0 into the spatial transformation, you end up with "length dilation" and that hardly matches with the contraction we expect.

cheers,

neopolitan
 
  • #120
neopolitan said:
I think you are talking about the light clock? or something similar? Someone else stated recently on a thread hereabouts that the light clock derivation has weaknesses. I would think anything similar has similar weaknesses.

The confusion I see comes after getting the students to get shown how time dilation is derived but no clarification is given along the lines that you can't take a contracted length and a dilated time to get a speed which the postulates you started with said was invariant.

Most students won't think more deeply than is required to pass the test and so will learn very little.

Others will instinctively grasp what has not been clarified.

Some, perhaps only a few, will be left with a vague unease because if L and t are such that L/t=c then L'/t' is not c.

I do think that we can derive the Lorentz transformations without even stopping at length contraction and time dilation. Lorentz seemed to and you can go directly from Galilean boosts to Lorentz transformations without having previously derived length contraction or time dilation, you just remove the assumption of instantaneous information transfer and use the first postulate. The second postulate falls out as a consequence.

I'd be happy to dispense with time dilation and length contraction altogether, and just go with Lorentz transformations, as Mentz possibly meant in an earlier post. But this is not the standard approach. Additionally, I would clarify just what it is that the Lorentz transformations can tell you, because if you just plug in t=0 into the spatial transformation, you end up with "length dilation" and that hardly matches with the contraction we expect.

cheers,

neopolitan
Thanks for your answer. As an old teacher of physics I have studied the different ways in which the Lorentz transformations could be derived.
1. I learned a lot from Paul Kard [1] who derives first the formula that accounts for the length contraction, which leads him to the formula that accounts for the Doppler shift which leads to the addition law of relativistic velocities and derives the formula that accounts for the time dilation from the Doppler shift formula. I knew all that from Kard's original papers in Russian.
[1] Leo Karlov, "Paul Kard and the Lorentz-free special relativity," Phys.Educ. 24, 165 (1989)
2. Kalotas and Lee [2] convinced me that the Doppler shift formula could be derived from the formula that accounts for the "Police Radar" an experiment performed in a single inertial reference frame, involving a single clock and so no clock synchronization. The formula that accounts for the Doppler shift is derived by simple injection of the first postulate. He also shows that the Lorentz transformations could be derived from the Doppler shift formula.
[2] T.M. Kalotas and A.R. Lee, "A "two line" derivation of the relativistic longitudinal Doppler formula," Am.J.Phys. 58, 187 (1990)
3. Asher Peres [3] taught me that the basic formulas of relativistic kinematics could be derived from Einstein's postulate: "All the physical laws are the same for all inertial observers,in particular the speed of light is the same" in the following order: radar echo, time dilation, additions of velocities, the Doppler Effect and optical aberration. He does not derive the Lorentz transformations even if starting with one of the basic formulas mentioned above could lead to them.
[3] Asher Peres, "Relativistic telemetry," Am.J.Phys. 55, 516 (1987)

When I started learning English from BBC, Professor Grammar told me that English is a very flexible language. I would say that Special Relativity is a very flexible chapter of physics. We can start with Einstein's postulte, derive the equation that accounts for one of the effects mentioned above and it leads us to the Lorentz transformations.
I would highly appreaciate the criticism of the approaches presented above. My students enjoyed them.
Kind regards and thanks for giving me the opprtunity to discuss about the teaching of special relativity.
 
  • #121
I'd be happy to dispense with time dilation and length contraction altogether, and just go with Lorentz transformations, as Mentz possibly meant in an earlier post.
Then why don't you? IMHO, TD and LC are tools for professionals to shortcut calculations, but they're bound to mislead beginners. Students begin to think in those mechanical, ether-like terms instead of appreciating the interdependence of space and time. It needs enormous knowlegde and mental discipline to get calculations right when working with these tools - not when they're applicable, but when you have to find out whether they are or not and in which direction.
But this is not the standard approach.
Yes, the standard approach is to teach LET and tell the students that, nevertheless, there is no absolute frame. At least that was what I experienced in school. It's a time-saving approach, but a dead end.
Additionally, I would clarify just what it is that the Lorentz transformations can tell you, because if you just plug in t=0 into the spatial transformation, you end up with "length dilation" and that hardly matches with the contraction we expect.
Well, but it is exactly what you did expect: the x-basis transforms like the t-basis, therefore, in the decomposition of a null-vector, the ratio of the t- and x-component stays the same, namely c.
Length contraction is something completely different and not applicable. You can use the Lorentz-transforms to find out how length contraction is defined to see this.
 
  • #122
I find myself in the (for me) very odd position of reconciler or mediator or some similar "kum-ba-ya" campfire nonsense. I am traveling and at high altitude, so I will blame it on reduced oxygen saturation.

Specifically, I agree with neopolitain, Mentz114, and JesseM (why can't you all just get along) even though you all disagree with each other. I agree with neopolitain that the standard equations are confusing. Because of that confusion and the possibility of error I follow Mentz114's approach of only using the Lorentz transform equations. Instead, I would use JesseM's spacetime diagrams to geometrically demonstrate the idea of time dilation and length contraction to a new student without ever using any formulas other than the Lorentz transform.

Don't worry, I am sure that this momentary lapse into reconciliation and agreement will pass as soon as I can get back down into more breathable atmosphere.
 
  • #123
Dalespam,
you're right. I wave the flag of truce. SR is too important to fall out over.

Before I go I just want to emphasize the bigger picture. What SR shows is that all physical effects ( that is, those agreed on by all observers) must be based on the proper interval, which leads to the requirement that correct physical laws must be covariantly expressed. In curved space-time this is still true and leads to the conclusion that only scalar contractions of tensors can be physical effects ( or do I mean observables ?). This is probably the most important thing so far to happen in physics.
 
  • #124
Wise words from DaleSpam and Mentz. I too will rein myself in.

I have privately tried to clarify what my concern is to Mentz. Hopefully that has helped sort things out.

I am aware that these forums, particularly the relativity forum, are constantly under a form of intellectual attack by people who think the whole framework of relativity is wrong somehow. There are certainly a lot of sites championing ideas which seem (at best) to be at odds with relativity and/or the standard cosmological model. I can understand that a siege mentality could result.

But not all questions are intended as attacks. Most, I suspect, are from people on the cusp of understanding SR. As I said to Mentz privately, these people are "intellectually vulnerable". Depending on circumstance, they could have their doubts and concerns addressed and continue on to be happy with SR, or they could feel that they have had their doubts and concerns minimised or ridiculed and end up turning to SR luddites or Bad Astronomers or whatever.

If we can identify what causes this confusion (and I am in the privileged position of having gone through that confusion myself), then perhaps we can identify a method of removing or reducing it.

If the forum hierarchy can clearly show that they understand where the confused student is coming from (after all, surely some of them had to go through a similar period of confusion?), then an appropriate sticky FAQ post could reduce the number of times that DaleSpam and others have to tell a new poster that he or she is mixing frames.

That post, I suggest, could contain the distilled wisdom of Jesse (his diagram and simultaneity considerations), Mentz (perhaps the student should really be using some variation of Lorentz transformations) and Dale (don't forget that one can look at this from a geometric perspective). My wisdom would be limited to the suggestion that it be explained clearly, once and for all, just where the frame mixing is taking place and why you can't use time dilation and length contraction the way it often is (mis)used.

If that saves a few students a year from the clutches of the lunatic fringe, it would surely be worth it?

cheers,

neopolitan
 
  • #125
Mentz114 said:
Bernhard,
I'm sure you're a dedicated and earnest teacher of the subject, but do beginners have to go into SR as deeply as you enjoy going ?

M
Thanks.
YES if we start with the Lorentz transformations in order to derive the formulas that account for the different relativistic effect.
Kind regards
 
  • #126
neopolitan said:
It depends a little on what Lo and To are.

I am tempted to think (using standard pairing, time dilation and length contraction):

T = To * gamma
L = Lo / gamma

so:

To / T = 1 / gamma
L / Lo = 1 / gamma

so:

(To / T)(L / Lo) = 1 /(gamma)2

Which is partly why I question it.

Rearranging (To / T)(L / Lo) = 1 gives you:

(To / Lo)(L / T) = 1

or

L / T = Lo / To

Which I think is an important consequence. In much later posts we are nearing a resolution ... maybe :)

For me that discussion could revolve, conceptually, around what a photon does traveling along between two events (but I stress that it doesn't have to). In one frame, it could be said that that photon travels L in time T (so L/T=c). In another frame, it could be said that that same photon travels Lo or L' in time To or T' (so that Lo/To=c or L'/T'=c).

cheers,

neopolitan
I think we could breath more life into the problem.
Consider an experiment in which an observer of I located at the origin O of its rest frame measures the velocity V of the origin O' of I'. He uses a rod at rest of proper length L0 and measures the coordinate time interval T during which O' covers the distance L0 concluding that
V=L0/T (1)
In a second experiment an observer locared at the origin O' of I' measures the velocity of the measuring rod used in the previous experiment. He measures the the distorted length of the rod L and the proper time interval T0 concluding that
V=L/T0 (2)
obtaining from (1) and (2)
L/T0=L0T.
At that moment we could say that the formula that accounts for the time dilation effect is the function which best fits experimental results, length contraction being a natural consequence of the first postulate: If you move relative to me with velocity V I move relative to you with speed -V.
Quoting you

For me that discussion could revolve, conceptually, around what a photon does traveling along between two events (but I stress that it doesn't have to). In one frame, it could be said that that photon travels L in time T (so L/T=c). In another frame, it could be said that that same photon travels Lo or L' in time To or T' (so that Lo/To=c or L'/T'=c).
I would say that the photon synchronizes the clocks in the two frame leading to transformations in which L/t=L'/t' becase L and t transform via the same Doppler factor.
Kind regards
 
  • #127
Bernhard,

I think you are giving a variation of the example which JesseM gave a while back, but without specifically taking into account the simultaneity issues that your example requires, because the person taking the measurement has to either be at the origin or at the end of the distance Lo.

Because the simultaneity issues are in there, but unstated, I am not convinced that the new student will emerge unconfused.

I am a little bemused by the idea of teaching relativity via the relativistic doppler equations.
In your last post you referred to:

transformations in which L/t=L'/t' becase L and t transform via the same Doppler factor.

I am pretty sure that "L and t transform via the same Lorentz factor" would be more accurate, so long as you were talking about appropriately defined L' and t'. I'm not sure what you mean by the photon synchronising the clocks, did you mean "the photon could be used for einstein synchronisation of the clocks"? I think my meaning in the last paragraph of post #110, which should be considered in context of an earlier post #107, might have been misunderstood.

I will wait until Jesse has had a chance to respond to post #107 before trying to get to the heart of what I mean in yet another post.

cheers,

neopolitan
 
  • #128
neopolitan said:
Bernhard,

I think you are giving a variation of the example which JesseM gave a while back, but without specifically taking into account the simultaneity issues that your example requires, because the person taking the measurement has to either be at the origin or at the end of the distance Lo.

Because the simultaneity issues are in there, but unstated, I am not convinced that the new student will emerge unconfused.

I am a little bemused by the idea of teaching relativity via the relativistic doppler equations.
In your last post you referred to:



I am pretty sure that "L and t transform via the same Lorentz factor" would be more accurate, so long as you were talking about appropriately defined L' and t'. I'm not sure what you mean by the photon synchronising the clocks, did you mean "the photon could be used for einstein synchronisation of the clocks"? I think my meaning in the last paragraph of post #110, which should be considered in context of an earlier post #107, might have been misunderstood.

I will wait until Jesse has had a chance to respond to post #107 before trying to get to the heart of what I mean in yet another post.

cheers,

neopolitan
Thanks Neopolitan
1. I have mentioned in a previous thread that the Lorentz contraction could be derived without imposing simultaneous detection of the space coordinates of the ends of the moving rod.
2. Consider that a source of light located at the origin O of I emits a light signal at t=0 in the positive direction of the x axis. After a given time of propagation it generates the event
(x=ct;t=x/c). The same event detected from I' is characterized by the space time coordinates
x'=g(x-Vt)=gx(1-V/c)=Dx
t'=g(t-Vx/cc=gt(1-V/c)=Dt
x/t=x'/t'=c
3. Have a look at
M/ Moriconi, "Special theory of relativity through the Doppler Effect," Eur.J.Phys. 27,1400-1423 (2006)
Kind regards
Bernhard
 
  • #129
bernhard.rothenstein said:
Thanks Neopolitan
1. I have mentioned in a previous thread that the Lorentz contraction could be derived without imposing simultaneous detection of the space coordinates of the ends of the moving rod.
2. Consider that a source of light located at the origin O of I emits a light signal at t=0 in the positive direction of the x axis. After a given time of propagation it generates the event
(x=ct;t=x/c). The same event detected from I' is characterized by the space time coordinates
x'=g(x-Vt)=gx(1-V/c)=Dx
t'=g(t-Vx/cc=gt(1-V/c)=Dt
x/t=x'/t'=c
3. Have a look at
M/ Moriconi, "Special theory of relativity through the Doppler Effect," Eur.J.Phys. 27,1400-1423 (2006)
Kind regards
Bernhard

Ok, gotcha - I think.

Because x=ct, the standard Lorentz factor multiplied by the Galilean boost (at least spatially) resolves back to the relativistic doppler factor, where

[tex]D = \sqrt{\frac{1-\frac{v}{c}}{1+\frac{v}{c}}}[/tex]

Correct?

The bit I would need to think about very carefully is the underlying assumption in the Lorentz Transformation. Do we have hidden assumptions somewhere which are incompatible?

My gut feeling is that there might be. Specifically, whenever I have thought about a Lorentz transformation and indeed a Galilean boost, it has been about an event which is colocated with neither the origin of I nor the origin of I', but considered by both to have been simultaneous with the event characterised by the colocation of origins. In other words, when the origins of I and I' were colocated, then xo=x'o=0 and to=t'o=0. Later, an event is detected at the origin of I and that same event is detected at the origin of I' (not simultaneously, one photon from the event will reach one, and then another photon from the event will reach the other).

I think I might have to go into this in more detail. But at the moment, I don't quite have enough time to give it justice.

cheers,

neopolitan
 
Last edited:
  • #130
neopolitan said:
Ok, gotcha - I think.

Because x=ct, the standard Lorentz factor multiplied by the Galilean boost (at least spatially) resolves back to the relativistic doppler factor, where

[tex]D = \sqrt{\frac{1-\frac{v}{c}}{1+\frac{v}{c}}}[/tex]

Correct?

The bit I would need to think about very carefully is the underlying assumption in the Lorentz Transformation. Do we have hidden assumptions somewhere which are incompatible?

My gut feeling is that there might be. Specifically, whenever I have thought about a Lorentz transformation and indeed a Galilean boost, it has been about an event which is colocated with neither the origin of I nor the origin of I', but considered by both to have been simultaneous with the event characterised by the colocation of origins. In other words, when the origins of I and I' were colocated, then xo=x'o=0 and to=t'o=0. Later, an event is detected at the origin of I and that same event is detected at the origin of I' (not simultaneously, one photon from the event will reach one, and then another photon from the event will reach the other).

I think I might have to go into this in more detail. But at the moment, I don't quite have enough time to give it justice.

cheers,

neopolitan
That is one of the papers in which length contraction is derived without simultaneous detection of the space coordinates of the ends of the moving rod
< Previous article | Next article * | This volume ^^ | This issue ^ | Content finder *

How to obtain the Lorentz space contraction formula for a moving rod from knowledge of the positions of its ends at different times

M Fernández Guasti et al 2009 Eur. J. Phys. 30 253-258 doi: 10.1088/0143-0807/30/2/003

In what concerns the transformation via the Doppler factor holds only in the case when I and I' are in the standard configuration and the light signal is emitted at t=t'=0 when the origins of the two frames are overlapped. Under such conditions
x'-0=D(x-0)
t'-0=D(t-0)
If the signal is emitted at a time t different from zero the straight line in I is no longer a straight line in I'.
Kind regards
 
  • #131
neopolitan said:
neopolitan said:
If you want to use the clock in the laboratory you as your reference point, you have to do this:

While a photon in the laboratory moves between mirrors, traveling 660km in 2.2ms - what happens to a photon which is at gamma of 29.3?

If 2.2ms has elapsed in the laboratory, then a period of 2.2ms/29.3 = 75μs will have elapsed in the rest frame of the test clock (the one accelerated to gamma of 29.3).
JesseM said:
No, 75 microseconds would represent how much time has elapsed on the test clock (if the test clock had closer mirrors so it could show time-intervals that small) in 2.2 ms of time in the lab frame. In the test clock's own frame, it's the lab clock that's running slow relative to the test clock, so when the lab clock has ticked forward 2.2 ms, the test clock has ticked forward 64.4 ms.
My fault. I was not clear about photons. It took a moment to see where you didn't agree since you seemed to be saying exactly the same as I said in my quote.

The light clock in the test frame is at gamma of 29.3 (it makes no sense to talk about a photon at gamma of 29.3).

Thinking about the light clock in the test frame, while 2.2ms has elapsed in the laboratory (one full in-laboratory tick-tick), the photon has traveled 1/29.3 of the distance it needs to travel for the clock to go through a full tick to tick sequence, which, according the laboratory, is 660km*29.3. According to the laboratory, the photon in the test frame's clock has traveled 660km in 2.2ms. According to the laboratory, the photon in the laboratory frame's clock has traveled 660km in 2.2ms. According to the laboratory, both photons have traveled 600km in 2.2ms.
Yes, all that makes sense. In the laboratory frame the photon in the lab's own light clock traveled vertically 660 km, while the photon in the moving "test" light clock traveled 660 km on a diagonal whose vertical component is only 660 km/29.3, and whose horizontal component is 2.2 ms times whatever speed the light clock is moving horizontally (the speed that gives a gamma of 29.3, which works out to 0.9994174c).
neopolitan said:
According to the test frame, what the laboratory frame "thinks" is 660km is actually 660km/29.3 and what the laboratory frame "thinks" is 2.2ms is actually 2.2ms/29.3.
Yes, although we should keep in mind that the last part only works if you're talking about a 2.2 ms time between two events which are located at the same horizontal position in the test frame, like the two events on the worldline of the photon in the test frame's own light clock. If the laboratory frame "thinks" there is a 2.2 ms period between two events which do not occur at the same horizontal position in the test frame, then the time between these same two events in the test frame will not be 2.2 ms/29.3.
neopolitan said:

(Aside: You can go through the last two paragraphs and swap the words "test" and "laboratory". The arguments would be the same. To reconcile the different views, you have to use relativity of simultaneity concepts. You shouldn't necessarily forget this next step, but at the moment, it is not necessary.)


If you want to call L'/t' LAFTD/time dilation that is fine. I do see here that that makes sense. But I also see that L'/t' length contraction/TAFLC makes equal sense. (Note that above I have not defined any primed frame or any unprimed frame.)

(660km * 29.3) / (2.2ms * 29.3) = (660km) / (2.2ms) = (660km / 29.3) / (2.2ms / 29.3) = 300000 km/s
But I don't think calling it (length contraction)/TAFLC makes sense, not unless you can justify it physically in terms of what events you're actually supposed to be measuring the distance and time between. For instance, consider your equation (660km / 29.3) / (2.2ms / 29.3). From the previous discussion, it seems this distance and time are meant to be between the following two events: 1) the event of the photon bouncing off the bottom of the test clock, and 2) the event on the photon's worldline that occurs 2.2 ms after it hits the bottom of the test clock as measured in the lab frame. In the lab frame, the spatial separation between events 1 and 2 is 660 km. Now, it's true that in the test clock's own frame, the spatial separation between these same events 1 and 2 is only (660 km / 29.3), and the time between events 1 and 2 is only (2.2 ms / 29.3). But the spatial separation here is not really obtained by either the length contraction equation (since 660 km and 660 km/29.3 don't represent the length of a single object in two different frames) or by the spatial analogue for time dilation (since we're looking at a single pair of events that are not simultaneous in either frame, whereas the SAFTD assumes the events are simultaneous in one of the two frames). Instead, the fact that the distance in one frame is equal to the distance in the other frame divided by 29.3 is really just a consequence of the fact that the two events are on the path of a photon, which must move at the same speed in both frames, and since the time between events in one frame is equal to the time in the other frame divided by 29.3, the equal speeds in both frames imply that the same must be true for the distance.

As for the fact that the time between events 1 and 2 in the test frame is equal to the time between these events in the lab frame divided by 29.3, I would say that this is obtained via the "reversed time dilation equation" where you've divided both sides of the regular time dilation equation by gamma. If the usual time dilation equation can be written in words as (time between events in frame where they're not colocated at same horizontal position) = (time between events in frame where they are colocated at same horizontal position) * gamma, then you're just dividing both sides by gamma to get (time between events in frame where they are colocated at same horizontal position) = (time between events in frame where they're not colocated at same horizontal position) / gamma. Here we know that in the lab frame where events 1 and 2 are not at the same horizontal position, the time between them is 2.2 ms, so we're dividing by gamma = 29.3 to get the time between them in the test frame where they are colocated at the same horizontal position.

On the other hand, consider your equation (660km * 29.3) / (2.2ms * 29.3). From your previous discussion, here I would imagine you are considering a different pair of events: 1b) the event of the photon hitting the bottom of the test clock, and 2b) the event of the photon hitting the top of test clock. In the test clock's own frame the spatial distance between these events is 660 km and the time between them is 2.2 ms. In the lab frame, though, the distance is 660 km * 29.3 and the time between them is 2.2 ms * 29.3. But here again the distance relation cannot be said to be an example of either length contraction or the SAFTD, but is just a consequence of the relation between the times of the events and the fact that they both lie on the worldline of a photon which moves at the same speed in both frames. As for the time relation, this is just the normal time dilation equation of the form (time between events in frame where they're not colocated at same horizontal position) = (time between events in frame where they are colocated at same horizontal position) * gamma. Here, the two events are colocated at the same horizontal position in the test frame, and the time between them in that frame is 2.2 ms; multiply this by gamma=29.3 and you get the time between the same two events in the lab frame where they are not colocated at the same horizontal position.

So, it's really important to state specifically what each of the distances and times in your equations are actually supposed to represent physically before you can decide what rules define the relation between them; as seen above, the mere fact that you're taking a time and dividing by gamma doesn't show that you're using the TAFLC, since you also do this in the reversed time dilation equation, but the two are conceptually different since if you pick a given pair of events, the reversed time dilation equation refers to the following:

(time between events in frame where they are colocated at same position along axis of motion between frames) = (time between events in frame where they are not colocated at same position along axis of motion between frames) / gamma

Whereas the TAFLC refers to the following:

(time in the non-colocated frame between two surfaces of simultaneity from the colocated frame which pass through the two events) = (time in the colocated frame between two surfaces of simultaneity from the colocated frame which pass through the two events--or equivalently, time between the events themselves in the colocated frame) / gamma

What's more, as I hadn't noticed until I thought about this problem specifically, the fact that a distance in one frame is equal to a distance in another frame multiplied or divided by gamma does not mean you are making use of either the length contraction equation or the the SAFTD equation, since in your example we were talking about the distance between a specific pair of events in two frames (so it wasn't length contraction), but the events were not simultaneous in either frame (so it wasn't the SAFTD equation).
neopolitan said:
I prefer keeping in mind that lengths which are not at rest with respect to my rest frame are contracted. So I do prefer "length contraction/TAFCL" (or if you must, you can call it "length contraction/inverse time dilation" but I don't like it, because I interpret time dilation as talking about what happens between two full ticks, not about measured time, eg numbers of ticks or number of graduations between ticks).
It's not really a matter of choice, "inverse time dilation" and "TAFCL" refer to different ideas, as my word-summary above tries to show. What's more I think you are getting yourself confused by thinking in terms of discrete "ticks" of a clock rather than continuous coordinate time--the time dilation equation is just about the coordinate time between an arbitrary pair of events in a frame where they're colocated as compared to the coordinate time between the same pair of events in a frame where they're not colocated, there's no need to consider the two events to be ticks of a single clock at rest in the frame where they're colocated, and even if you do want to think of it that way, there's no need to consider them consecutive ticks as opposed to, say, two ticks at different times which have 10,000 ticks between them. And if you think in this way, the "reversed time dilation equation" says that if you know the amount of coordinate time in frame X between some arbitrary pair of events on a clock that's moving in frame X, and you want to know how many ticks there were between these events as measured by the clock itself, then you take the original coordinate time in frame X and divide by gamma.
neopolitan said:
You might prefer to think about the fact that compared to your clock, the period between ticks of a clock in motion with respect to you is longer. (Or whatever physical definition you ascribe to time dilation, the point is that you may prefer to keep the time dilation equation whereas I prefer to keep the length contraction equation.)
Again, I don't think there's any matter of preference here--if you specify exactly what your numbers represent physically in terms of actual events or objects, then I think it's always clear what equation you're using implicitly.
neopolitan said:
There is subtle difference in approaches which might be illustrative to highlight. You are focussed very much on the relativity (which is the bit I coloured silver above, so you have to select it to read it).
I don't see how I am, perhaps you're misunderstanding me somehow. All of my above analysis is about events on the worldline of the photon in the test clock, and the distances/times between these events in both the frame of the lab and the frame of the test clock; while it's true that everything would be reversed if you instead considered events on the worldline of the photon in the lab clock as seen from both frames, that's something I haven't even been discussing.
neopolitan said:
Relativity says two things:

Something that is in motion relative to me will be length contracted and experience less time than me, relative to me.

and

The reverse is true, relative to that something.

I am really only looking at the first part, because I know the second part is true, but not terribly useful for working out the extent of that contraction and reduction of time experienced.
As I said, the distances in your equations don't actually correspond to the length of a single object in two different frames at all. And if by "something that is in motion relative to me will ... experience less time than me, relative to me" you mean "events which occur at the same position (or same horizontal position) in the frame of the 'something' in motion relative to me will have less of a time-separation in their frame than they do in my frame", then that's exactly what I was talking about in my analysis, since in both cases I was dealing with two events located at the same horizontal position in the test clock's frame, and comparing the time between them in the test clock's frame with the time between them in the lab frame (with the time always being larger in the lab frame). Never was I looking at the "reverse", if by that you mean events located at the same horizontal position in the lab frame.
 
Last edited:
  • #132
If you don't like:

length / time = contracted length / TAFLC = SAFTD / dilated time

would you accept:

length / time = contracted length / "inverse dilated" time = "inverse contracted" length / dilated time

cheers,

neopolitan
 
  • #133
How about this:

You have two observers, not at rest with respect to each other (they separate at v).

Two events are observed, at a distance along the axis defined by the separation of the observers.

The observers are advised that the events were either collocated but not simultaneous or simultaneous but not collocated (assume they were told that the events happened "together" - a vague term which could mean either - and they were told in such a way that they could reasonably assume that the "togetherness" related to their own inertial frame).

Suppose that one observer (A) notices that the separation, if spatial, matches that of a rod in possession (length L) or, if temporal, is a period of t.

Suppose further that the other observer (B) is moving towards the events (according to A).

If A and B have identical rods and identical clocks, what sort of conclusions will B come to? Results in terms of L and t would be appreciated :smile:

Note that there are no givens for what the events actually are, where they are or when they took place. The experimental controllers may even have lied about the events being "together" at all.

cheers,

neopolitan

(I am leading somewhere, by the way. I think the problem may be easier to solve geometrically, but numbers are fine too.)
 
  • #134
neopolitan said:
The observers are advised that the events were either collocated but not simultaneous or simultaneous but not collocated (assume they were told that the events happened "together" - a vague term which could mean either - and they were told in such a way that they could reasonably assume that the "togetherness" related to their own inertial frame).
If both observers are told this, at least one of them is being lied to (assuming v is not zero). If we don't know which one, then there's insufficient information to answer your question.

neopolitan said:
Suppose further that the other observer (B) is moving towards the events (according to A).
You can't move relative to an event. You can move towards an object that "passes through" the event. I guess you mean moving towards the location of the event in A's frame.
 
  • #135
DrGreg said:
If both observers are told this, at least one of them is being lied to (assuming v is not zero). If we don't know which one, then there's insufficient information to answer your question.

Suppose further that the other observer (B) is moving towards the events (according to A).
You can't move relative to an event. You can move towards an object that "passes through" the event. I guess you mean moving towards the location of the event in A's frame.

I did say that the experimental controllers might have been lying altogether, they could be lying to both, it doesn't really matter. I disagree that there is insufficient information, you are just looking at it the wrong way.

Perhaps a geometric sort of person can provide an answer (I imagine that DaleSpam could probably do it).

What did "according to A" mean to you? To me it was just shorthand for saying that B is between A and where the events took place. Since A is at rest in A's frame, then in A's frame, B is moving towards where the events were (I didn't said "relative to" in this context). But anyway, yes, "moving towards the location of the event in A's frame" is right too.

With this clarified, do you have enough information?

cheers,

neopolitan
 
  • #136
neopolitan said:
With this clarified, do you have enough information?
No. If I don't know who's being told the truth, then I know nothing.
 
  • #137
Rethink.

Are A and B capable of measuring things for themselves, or do they have to rely on what they are told? If they can measure, they don't need to be told anything, they can work it out for themselves.

If A measures a length of LA and a time interval of tA, then B will measure a length and time given by

[tex]L_B = \gamma(L_A-vt_A)[/tex]
[tex]t_B = \gamma(t_A - vL_A/c^2)[/tex]​

Furthermore, A can calculate [itex]Q = L_A^2 - c^2t_A^2[/itex] and B can calculate [itex]Q = L_B^2 - c^2t_B^2[/itex]. They will both get the same answer.

If that answer is positive then there is a frame in which the events occurred simultaneously at a distance of [itex]\sqrt{Q}[/itex] apart. That frame might be A, B or some other frame.

If that answer is negative then there is a frame in which the events occurred at the same place separated by a time interval of [itex]\sqrt{-Q}/c[/itex]. That frame might be A, B or some other frame.

If the answer is zero, then neither statement is true in any frame.

I don't think that was the answer you were looking for, but that's the answer based on my understanding of the problem you posed.
 
  • #138
neopolitan said:
If you don't like:

length / time = contracted length / TAFLC = SAFTD / dilated time

would you accept:

length / time = contracted length / "inverse dilated" time = "inverse contracted" length / dilated time
The problem is, length and time of what? It really is necessary to at least outline in broad terms what is supposed to be measured physically (even if it's something vague like 'the time between two events with a lightlike separation in two frames, one of which the events have the same horizontal position in'). As I pointed out in my last post, in the example with the light clocks if you pick two events on the worldline of the photon in the test clock as I did, then although it's true the distance between them will involve a gamma factor, this won't be because you were measuring the "length" of any single object in two frames, and it also won't be because you were using the SAFTD since the events were not simultaneous in either frame; rather, it's just because the distance between the events in each frame is just equal to c*(time between events in that frame), and the time between events was related by "inverse dilated time". So what you really have is something more like:

c*(time)/time = c*(inverse dilated time)/(inverse dilated time)
 
Last edited:
  • #139
neopolitan said:
How about this:

You have two observers, not at rest with respect to each other (they separate at v).

Two events are observed, at a distance along the axis defined by the separation of the observers.

The observers are advised that the events were either collocated but not simultaneous or simultaneous but not collocated (assume they were told that the events happened "together" - a vague term which could mean either - and they were told in such a way that they could reasonably assume that the "togetherness" related to their own inertial frame).
"Together" in just one of the two frames, or in both? Assuming the events were at different points in spacetime, then if they were simultaneous in one frame, then they'd have a spacelike separation so they can't be colocated in either frame, and the only way they could be simultaneous in the other frame is if they occurred at the same x-coordinate in the first frame and the same x' coordinate in the second frame (x and x' defined as the axes on which the two observers are moving relative to one another, as in the usual way of writing the Lorentz transformation). On the other hand, if they were colocated in one frame then they can't be simultaneous or colocated in the other frame.
neopolitan said:
Suppose that one observer (A) notices that the separation, if spatial, matches that of a rod in possession (length L) or, if temporal, is a period of t.

Suppose further that the other observer (B) is moving towards the events (according to A).

If A and B have identical rods and identical clocks, what sort of conclusions will B come to? Results in terms of L and t would be appreciated :smile:
It seems pointless to leave it a mystery whether the events are colocated or simultaneous (and in whose frame this is true), since aside from using DrGreg's most general possible answer from post #137 in terms of the Lorentz transformation equations, the only way I can think of to answer this question is to break it down into different possibilities like:

1. Events are colocated in frame A, neither colocated nor simultaneous in B
2. Events are colocated in frame B, neither colocated nor simultaneous in A
3. Events are simultaneous in A, also simultaneous in B because both occur at same x-coordinate in A and same x'-coordinate in B
4. Events are simultaneous in A, neither colocated nor simultaneous in B
5. Events are simultaneous in B, neither colocated nor simultaneous in A

...and then answer what conclusions B would reach in each of the 5 cases. So, could you just specify which of these 5 cases applies? If not, can you explain why you want it to be mysterious?
 
  • #140
JesseM said:
... the only way I can think of to answer this question is to break it down into different possibilities like:

1. Events are colocated in frame A, neither colocated nor simultaneous in B
2. Events are colocated in frame B, neither colocated nor simultaneous in A
3. Events are simultaneous in A, also simultaneous in B because both occur at same x-coordinate in A and same x'-coordinate in B
4. Events are simultaneous in A, neither colocated nor simultaneous in B
5. Events are simultaneous in B, neither colocated nor simultaneous in A

...and then answer what conclusions B would reach in each of the 5 cases. So, could you just specify which of these 5 cases applies? If not, can you explain why you want it to be mysterious?

None of the cases.

Both A and B have been told the events happened "together".

Both A and B receive photons from the events with a temporal delay (since they both consider themselves to be at rest, there is no spatial component related to where they receive the photons).

From that they work out that the events have either a spatial "togetherness" and a temporal separation or a temporal "togetherness" and a spatial separation.

"Truth" or "reality" about the timing and locations of events is inconsequential.

I didn't ask for reality, I asked about "what sort of conclusions will B come to?"

cheers,

neopolitan
 

Similar threads

  • Special and General Relativity
Replies
10
Views
542
  • Special and General Relativity
2
Replies
45
Views
2K
Replies
63
Views
3K
  • Special and General Relativity
Replies
16
Views
678
  • Special and General Relativity
Replies
11
Views
998
  • Special and General Relativity
2
Replies
36
Views
2K
  • Special and General Relativity
Replies
5
Views
1K
  • Special and General Relativity
Replies
34
Views
3K
  • Special and General Relativity
2
Replies
54
Views
766
  • Special and General Relativity
Replies
13
Views
1K
Back
Top