How did Hamilton derive the characteristic function V in his essay?

  • #1
selim
2
1
In Hamilton's "on a general method in dynamics", he starts with varying the function ##U## and writes the equation:
$$\delta U=\sum m(\ddot x\delta x+\ddot y\delta y+\ddot z\delta z)$$
Then he defines ##T## to be:
$$T=\frac{1}{2}\sum m (\dot x^2+\dot y^2+\dot z^2)$$
Then by ##dT=dU##, he writes:
$$T=U+H$$
Then he varies T and writes:
$$\delta T= \delta U+\delta H$$
note that he is also varying in the initial conditions, that's why he did not omit the term ##\delta H##.
Hamilton then multiplies this expression by dt and integrates and writes it as:
$$\int\sum m(dx \delta \dot x+dy \delta \dot y+dz \delta \dot z)=\int\sum m(d \dot x \delta x+d \dot y \delta y+d \dot z \delta z)+\int\delta H dt$$
Then comes the part where I got confused. He says "that is, by the principles of the calculus of variations" and writes:
$$\delta V=\sum m(\dot x \delta x+\dot y \delta y+\dot z \delta z)-\sum m(\dot a \delta a+\dot b \delta b+\dot c \delta c)+\delta H t$$
where (x,y,z) and (a,b,c) are final and initial conditions then he denotes V by the integral:
$$V=\int\sum m(\dot x \delta x+\dot y \delta y+\dot z \delta z)$$
My questions are as follows:
1-how did he get ##\delta V##, what "principle of the calculus of variations" did he use?
2-then how from that did he get the integral ##V##?
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
To my shame I must admit that I've never read the original writings by Hamilton on his action principle. Do you have a reference?
 
  • #3
  • Love
Likes vanhees71
  • #4
selim said:
2-then how from that did he get the integral ##V##?
Equation (B) of the paper gives the definition of ##V##: $$V \equiv \int \sum m(\dot x dx + \dot y dy + \dot z dz) = \int_0^t 2T dt \,\,\,\,\,\,\,\, (B)$$

1-how did he get ##\delta V##, what "principle of the calculus of variations" did he use?
With the definition (B) and some manipulations, you can derive the expression for ##\delta V## given in equation (A) of the paper. Start with equation (10) of the paper: $$\int \sum m(dx \delta \dot x + dy \delta \dot y + dz \delta \dot z) = \int \sum m(d \dot x \delta x + d \dot y \delta y + d \dot z \delta z) + \int \delta H dt \,\,\,\,\,\,\,\, (10)$$
The left-hand side of (10) is ##\int \delta T dt##. The last term on the right is just ##t \delta H## because ##H## is independent of time. So, (10) can be written as $$\int \delta T dt = \int \sum m(d \dot x \delta x + d \dot y \delta y + d \dot z \delta z) + t \delta H $$
The integral on the right can be manipulated using integration by parts. For example,
$$\int_0^t m d \dot x \delta x = \int_0^t m (\frac{d \dot x}{dt}) \delta x dt = m \dot x \delta x \bigg|_0^t - \int_0^t m\dot x \frac{d}{dt}(\delta x) dt$$ Since ##\frac{d}{dt}(\delta x) = \delta \dot x## and ##\dot x dt = dx##, we get $$\int_0^t m d \dot x \delta x = m \dot x \delta x \bigg|_0^t - \int_0^t m dx \delta \dot x = m \dot x \delta x - m\dot a \delta a - \int_0^t m dx \delta \dot x$$ The first term on the far right, ##m \dot x \delta x##, is to be evaluated at the time ##t## of the upper limit of the integration.
##\dot a## and ##\delta a## represent evaluation of ##\dot x## and ##\delta x## at the initial time ##t = 0##.

Doing the same thing for the ##\dot y \delta y## and ##\dot z \delta z## integrations in (10), you can see that equation (10) may be written as $$\int \delta T dt = \sum m ( \dot x \delta x + \dot y \delta y + \dot z \delta z ) - \sum m ( \dot a \delta a+ \dot b \delta b + \dot c \delta c) - \int \delta T dt - t \delta H$$ or $$2\int_0^t \delta T dt = \sum m ( \dot x \delta x + \dot y \delta y + \dot z \delta z ) - \sum m( \dot a \delta a+ \dot b \delta b + \dot c \delta c ) - t \delta H$$ According to (B), the left side is ## \delta V##. So, we finally get equation (A) $$\delta V= \Sigma m\left( \dot x \delta x + \dot y \delta y + \dot z \delta z \right) - \sum m ( \dot a \delta a+ \dot b \delta b + \dot c \delta c) - t \delta H$$

I'm unsure what Hamilton meant when he stated "by the principles of the calculus of variations". Here, we used integration by parts and the use of identities such as ##\frac{d}{dt}(\delta x) = \delta \dot x##. These are often used in derivations in the calculus of variations.
 
  • Like
  • Wow
  • Love
Likes SammyS, vanhees71 and selim

1. How did Hamilton derive the characteristic function V in his essay?

Hamilton derived the characteristic function V by applying the principle of least action to the Lagrangian function of a dynamical system. By varying the action integral with respect to the generalized coordinates and their time derivatives, he obtained the equations of motion, which led to the characteristic function V.

2. What is the significance of the characteristic function V in Hamilton's essay?

The characteristic function V plays a crucial role in Hamiltonian mechanics as it allows for the transformation of the equations of motion from the Lagrangian formalism to the Hamiltonian formalism. It provides a convenient way to describe the dynamics of a system in terms of generalized coordinates and momenta.

3. How does Hamilton's characteristic function V differ from the Lagrangian function?

The Lagrangian function describes the dynamics of a system in terms of generalized coordinates and their time derivatives, while the characteristic function V incorporates both the Lagrangian function and the generalized momenta. It serves as a generating function for the canonical transformations between the two formalisms.

4. Can the characteristic function V be used to derive the Hamiltonian of a system?

Yes, the characteristic function V can be used to derive the Hamiltonian of a system by performing a Legendre transformation with respect to the generalized momenta. This transformation converts the Lagrangian function into the Hamiltonian function, which describes the dynamics of the system in terms of generalized coordinates and momenta.

5. How did Hamilton's formulation of mechanics revolutionize classical physics?

Hamilton's formulation of mechanics revolutionized classical physics by providing a more powerful and elegant framework for describing the dynamics of physical systems. The introduction of the characteristic function V and the Hamiltonian formalism allowed for a more systematic and efficient way to analyze and solve complex dynamical problems.

Similar threads

  • Classical Physics
Replies
5
Views
1K
Replies
17
Views
2K
Replies
3
Views
585
  • Classical Physics
Replies
3
Views
2K
  • Classical Physics
Replies
1
Views
1K
Replies
1
Views
808
Replies
8
Views
1K
  • Special and General Relativity
Replies
5
Views
364
  • Advanced Physics Homework Help
Replies
3
Views
395
Replies
27
Views
2K
Back
Top