MHB How Does Integration by Parts Solve the Integral of Tanh(x)/(xe^x)?

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral of tanh(x)/(xe^x) from 0 to infinity can be expressed using differentiation under the integral sign. It is transformed into a form involving the Digamma function and the Gamma function, specifically leading to I(2) = ln(Γ(5/4)Γ(1/4)/Γ(3/4)²). An alternative method also derives the same result by manipulating the integral into a product form using properties of the Gamma function. Both approaches confirm the relationship between the integral and the Gamma function values. The discussion highlights the versatility of integration techniques in solving complex integrals.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$ \int^{\infty}_0 \frac{\tanh(x) }{xe^x} \, dx $$

$\tanh(x) \text{ is the tangent hyperbolic function }$
 
Mathematics news on Phys.org
Cool Problem!(Drunk)

I will solve this using differentiation under the integral sign.

The integral can be written in another form

$$ \int_0^\infty \frac{\tanh(x)}{x e^x}dx = \int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt$$

Let us define

$$ I(\alpha) = \int_0^1 \frac{t^\alpha-1}{(t^2+1)\ln t}dt$$

$$\begin{aligned} I'(\alpha) &= \int_0^1 \frac{t^\alpha}{t^2+1}dt \\ &= \int_0^1 t^\alpha \sum_{k=0}^{\infty}(-1)^k t^{2k} \ dt \\ &= \sum_{k=0}^\infty (-1)^k \int_0^1 t^{\alpha + 2k}\ dt \\ &= \sum_{k=0}^\infty \frac{(-1)^k}{\alpha +2k+1} \\ &= \frac{1}{\alpha+1}\sum_{k=0}^\infty \frac{(-1)^k}{1+\left( \dfrac{2}{\alpha + 1}\right)k} \\ &= \frac{1}{4}\left\{ \psi \left( \frac{3+\alpha}{4} \right)-\psi \left( \frac{1+\alpha}{4} \right) \right\}\end{aligned}$$

\(\psi (*)\) is the Digamma Function.

$$\begin{aligned} I(\alpha) &= \frac{1}{4}\int \left\{ \psi \left( \frac{3+\alpha}{4} \right)-\psi \left( \frac{1+\alpha}{4} \right) \right\} d\alpha \\ &= \left(\ln \left( \Gamma \left( \frac{3+\alpha}{4}\right)\right)- \ln \left( \Gamma \left( \frac{1+\alpha}{4}\right)\right)\right)+C \end{aligned}$$

By letting \(\alpha = 0\), we obtain

$$ C= \ln \left( \frac{\Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)}\right)$$

Therefore

$$ \begin{aligned} I(\alpha)&= \ln \left( \frac{\Gamma \left( \dfrac{3+\alpha}{4}\right)}{\Gamma \left( \dfrac{1+\alpha}{4}\right)}\right)+\ln \left( \frac{\Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)}\right) \\ &= \ln \left( \frac{\Gamma \left( \dfrac{3+\alpha}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{1+\alpha}{4}\right) \Gamma \left( \dfrac{3}{4}\right)}\right)\end{aligned} $$

Our integral is a special case when \(\alpha = 2\), therefore

$$ I(2) = \int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt = $$

$$\ln \left( \frac{\Gamma \left( \dfrac{5}{4}\right) \Gamma \left( \dfrac{1}{4}\right)}{\Gamma \left( \dfrac{3}{4}\right)^2} \right) = {2\ln \left( \frac{2\Gamma \left(\dfrac{5}{4} \right)}{\Gamma \left( \dfrac{3}{4}\right)}\right)}$$
 
sbhatnagar said:
I will solve this using differentiation under the integral sign.
I thought only Physicists were allowed to do that! Of course we rarely check to see if we can...

-Dan
 
Here's another method to do it without using differentiation under the integral sign.

$$ \begin{aligned} I &= \int_0^1 \frac{t^2-1}{(t^2+1) \ln(t)}dt \\
&= \int_0^1 \frac{t+1}{t^2+1}\frac{t-1}{\ln(t)}dt \\
&= \int_0^1 \frac{t+1}{t^2+1} \int_0^1 t^x dx \ dt \\
&= \int_0^1 \int_0^1 \frac{t^{x+1}+t^x}{t^2+1}dt \ dx \\
&= \int_0^1 \int_0^1 (t^{x+1}+t^x)\sum_{n=0}^{\infty}(-1)^n t^{2k} dt \ dx \\
&= \int_0^1 \left( \frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}+\cdots \right)dx \\
&=\ln\left(\frac{2}{1} \right)+\ln\left(\frac{3}{2} \right)-\ln\left(\frac{4}{3} \right)-\ln\left(\frac{5}{4} \right)+\cdots \\
&= \ln \left[ \prod_{k=0}^{\infty}\frac{(4k+3)^2}{(4k+1)(4k+5)} \right] \\
&= \ln \left[ \prod_{k=0}^{\infty}\frac{(k+\frac{4}{3})^2}{(k+ \frac{1}{4} )(k+\frac{5}{4})}\right]
\end{aligned}$$

This product can be tackled using the formula

$$ \prod_{k=0}^{\infty} \frac{(k+a_1)(k+a_2)(k+a_3) \cdots (k+a_j)}{(k+b_1)(k+b_2)(k+b_3) \cdots (k+b_j)} = \frac{\Gamma(b_1) \Gamma(b_2) \Gamma(b_3) \cdots \Gamma (b_j)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3) \cdots \Gamma (a_j)}$$

where $a_1+a_2+\cdots +a_j = b_1+b_2+\cdots +b_j$ and no $b_j$ is 0 or a negative integer. Applying this gives

$$ I= \ln \left( \dfrac{\Gamma \left( \frac{1}{4}\right)\Gamma \left( \frac{5}{4}\right)}{\Gamma \left( \frac{3}{4}\right)^2}\right)$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top