Impossible probability between theoretical possibility and reality

  • #1
Kinker
18
1
TL;DR Summary
Even if it is theoretically possible, does the physical probability of such an event in reality become 0 because there is a lower limit to the possibility of such an impossible event in reality?
Boltzmann's brain, entropy reduction, Poincaré's recursion theorem, the probability of oxygen molecules in a room gathering in one place, the probability of quantum tunneling of macroscopic objects, etc. are theoretically possible. But the probability of these events is very low. Additionally, physical interactions with the environment, emergent properties, and other factors make it even more difficult. Is there a difference between theoretical possibility and real possibility? Even if the time of the universe is infinite, are the above events only theoretically possible and will never happen in reality?
 
Physics news on Phys.org
  • #2
As best that is known, if the probability is theoretically tiny but non-zero, that it what should be expected from experiments. But it's always open to more precise verification.
 
  • Like
Likes Kinker
  • #3
As soon as we have observed for an infinite amount of time, we'll let you know. :smile:
 
  • Like
  • Haha
Likes vanhees71, Kinker and Vanadium 50
  • #4
phinds said:
As soon as we have observed for an infinite amount of time, we'll let you know. :smile:
You must do it. It's a promise😜
 
  • Haha
Likes vanhees71
  • #5
Kinker said:
Even if the time of the universe is infinite, are the above events only theoretically possible and will never happen in reality?
If the time is infinite, these things will not only happen, but happen infinitely many times.
 
  • Like
Likes Quantum Waver and vanhees71
  • #6
Demystifier said:
If the time is infinite, these things will not only happen, but happen infinitely many times.
Isn't the probability of an event a measure of possibility, not certainty? Is the infinite monkey theorem valid in the reality of a universe with infinite time?
 
  • #7
Kinker said:
Isn't the probability of an event a measure of possibility, not certainty? Is the infinite monkey theorem valid in the reality of a universe with infinite time?
Yes. So?
 
  • #8
Demystifier said:
Yes. So?
Infinity cannot exist in reality, right? Therefore, I do not believe that the infinite monkey theorem is completely valid in reality. In reality and physics, I think an error occurs if you substitute infinity.
 
  • #9
Kinker said:
Infinity cannot exist in reality, right? Therefore, I do not believe that the infinite monkey theorem is completely valid in reality. In reality and physics, I think an error occurs if you substitute infinity.
You are making a category mistake. Infinity theorems, or any mathematical theorems for that matter, do not depend on physical reality.
 
  • #10
Demystifier said:
You are making a category mistake. Infinity theorems, or any mathematical theorems for that matter, do not depend on physical reality.
Probability does not indicate the certainty of an event, so wouldn't an event with an extremely low probability never occur even in a universe with infinite time?
 
  • #11
Kinker said:
Probability does not indicate the certainty of an event, so wouldn't an event with an extremely low probability never occur even in a universe with infinite time?
No, your reasoning is wrong.
 
  • #12
Demystifier said:
No, your reasoning is wrong.
Why? what is the reason?
 
  • #13
Kinker said:
Why? what is the reason?
Because for any arbitrary small ##{\cal P}>0## there is a sufficiently large ##T<\infty## such that ##{\cal P}T=1##.
 
  • Like
Likes Kinker and Vanadium 50
  • #14
Kinker said:
Infinity cannot exist in reality, right? Therefore, I do not believe that the infinite monkey theorem is completely valid in reality. In reality and physics, I think an error occurs if you substitute infinity.
Be patient, none of these events require an infinite amount of time.
For example, in the monkey experiment, it may only take a billion billion years for a billion monkeys to outdo Shakespeare.
You just need to keep them fed and their typewriters in good working order for that amount of time.
I'm not saying things could not go wrong. In that amount of time those monkeys could evolve - and perhaps decide to test your narrative skills.
 
  • Skeptical
Likes Kinker and PeroK
  • #15
Kinker said:
Isn't the probability of an event a measure of possibility, not certainty? Is the infinite monkey theorem valid in the reality of a universe with infinite time?
Methinks you miss the point. It is possible that the monkeys would produce Merchant of Venice overnight (with lotsa coffee)
I feel it necessary to reference a favorite comedy bit on the subject
 
  • #16
.Scott said:
Be patient, none of these events require an infinite amount of time.
For example, in the monkey experiment, it may only take a billion billion years for a billion monkeys to outdo Shakespeare.
You just need to keep them fed and their typewriters in good working order for that amount of time.
I'm not saying things could not go wrong. In that amount of time those monkeys could evolve - and perhaps decide to test your narrative skills.
They tried this with some real monkeys. The monkeys soon got bored and one defecated on its typewriter.
 
  • Like
Likes hutchphd and Kinker
  • #17
Demystifier said:
Because for any arbitrary small ##{\cal P}>0## there is a sufficiently large ##T<\infty## such that ##{\cal P}T=1##.
In reality, there is no infinity, right? Isn't that moment finite, no matter how old it is? I think it is a paradox to make predictions by substituting infinity in reality.
 
  • #18
Kinker said:
In reality, there is no infinity, right? Isn't that moment finite, no matter how old it is? I think it is a paradox to make predictions by substituting infinity in reality.
Take the longest moment of time that you care about. Multiply it by the largest number you can think of. An infinite universe will exist longer than that.
 
Last edited:
  • Wow
Likes Kinker
  • #19
Kinker said:
Isn't that moment finite, no matter how old it is?
Didn't I write ##T<\infty##?
 
  • #21
Demystifier said:
Didn't I write ##T<\infty##?
So, are the events presented above inevitable?
 
  • #22
Kinker said:
So, are the events presented above inevitable?
Is the event with probability 99.999% inevitable?
 
  • Skeptical
Likes Kinker
  • #23
Demystifier said:
Is the event with probability 99.999% inevitable?
Yes, I think so. But my head hurts.
 
  • #24
Kinker said:
Yes, I think so. But my head hurts.
That’s because you’re trying to make a distinction between “can’t happen” and “could happen but won’t”. You can avoid the pain by not using ill-defined terms like “inevitable” or “infinite” and instead thinking in terms of the probability of something happening as a function of time.
 
  • Like
  • Wow
Likes Lord Jestocost, Kinker and Bystander

What is "impossible probability"?

"Impossible probability" refers to the likelihood of an event occurring that is so low, it is considered to be impossible according to mathematical or scientific principles.

What is "theoretical possibility"?

"Theoretical possibility" refers to the potential for an event to occur based on theoretical or hypothetical scenarios, without taking into account real-world limitations or constraints.

What is the difference between "impossible probability" and "theoretical possibility"?

The main difference between "impossible probability" and "theoretical possibility" is that impossible probability is based on actual mathematical or scientific principles, while theoretical possibility is based on hypothetical scenarios that may not be feasible in reality.

Can something be theoretically possible but impossible in reality?

Yes, something can be theoretically possible but impossible in reality. This means that while an event may be possible according to theoretical scenarios, it may not be feasible or practical in the real world due to various limitations or constraints.

How do scientists determine the likelihood of impossible probabilities?

Scientists use mathematical and statistical methods to determine the likelihood of impossible probabilities. This involves analyzing data, conducting experiments, and creating models to understand the probability of certain events occurring.

Similar threads

  • Quantum Interpretations and Foundations
Replies
25
Views
1K
Replies
75
Views
8K
  • Quantum Physics
Replies
4
Views
2K
  • Quantum Physics
Replies
2
Views
1K
  • Quantum Interpretations and Foundations
2
Replies
41
Views
3K
  • STEM Career Guidance
Replies
13
Views
2K
  • Quantum Physics
2
Replies
40
Views
7K
  • Beyond the Standard Models
Replies
2
Views
2K
Back
Top