MHB Mahesh's question via email about Laplace Transforms (2)

AI Thread Summary
The discussion focuses on solving the integral equation involving the function f(t) using Laplace Transforms. The convolution theorem is applied, leading to the transformation of the integral equation into a solvable algebraic form. After manipulating the equation, the Laplace Transform F(s) is expressed as F(s) = (7(s + 3))/(s^2(s + 6)). The inverse transform is computed using partial fractions, resulting in the final solution f(t) = (79/12) + (7/2)t - (7/12)e^(-6t). This demonstrates the effective application of Laplace Transforms in solving integral equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle f\left( t \right)$ satisfies the integral equation

$\displaystyle f\left( t \right) = 7\,t - 3\int_0^t{ f\left( u \right) \,\mathrm{e}^{-3\,\left( t - u \right) } \,\mathrm{d}u } $

Find the solution to the integral equation using Laplace Transforms.

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{3\,F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{3\,F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{3}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s + 6}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s + 6 \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 6} &\equiv \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \\
A\,s\left( s + 6 \right) + B\,\left( s + 6 \right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies 6\,B = 21 \implies B = \frac{7}{2} $

Let $\displaystyle s = -6 \implies 36\,C = -21 \implies C = -\frac{7}{12} $

Thus $\displaystyle A\,s\left( s + 6 \right) + \frac{7}{2} \left( s + 6 \right) - \frac{7}{12}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

$\displaystyle \begin{align*} 7\,A + \frac{7}{2} \cdot 7 - \frac{7}{12} \cdot 1^2 &= 7\cdot 7 + 21 \\
7\,A + \frac{49}{2} - \frac{7}{12} &= 70 \\
7\,A + \frac{294}{12} - \frac{7}{12} &= \frac{840}{12} \\
7\,A + \frac{287}{12} &= \frac{840}{12} \\
7\,A &= \frac{553}{12} \\
A &= \frac{79}{12} \end{align*}$

$\displaystyle \begin{align*} F\left( s \right) &= \frac{79}{12} \left( \frac{1}{s} \right) + \frac{7}{2} \left( \frac{1}{s^2} \right) - \frac{7}{12} \left( \frac{1}{s + 6} \right) \\
f\left( t \right) &= \frac{79}{12} + \frac{7}{2}\,t - \frac{7}{12} \,\mathrm{e}^{-6\,t} \end{align*}$
 
Mathematics news on Phys.org
This is your work:

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

Edit starts here: (look for the boxes, the first box is an extra 3, all the other boxes are the corrections for removing said 3).

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{\underbrace{\boxed{3}}_{\text{this is the extra 3 I removed from here on out}}\, F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{\boxed{1}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s +\boxed{4}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s +\boxed{4} \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s +\boxed{4}\right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + \boxed{4}} &\equiv \frac{7\,s + 21}{s^2\,\left( s + \boxed{4}\right) } \\
A\,s\left( s +\boxed{4}\right) + B\,\left( s + \boxed{4}\right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies\boxed{4}\,B = 21 \implies B = \frac{21}{\boxed{4}} $

Let $\displaystyle s = -4 \implies\boxed{16}\,C =\boxed{-7} \implies C =\boxed{ -\frac{7}{16}} $

Thus $\displaystyle A\,s\left( s + \boxed{4}\right) +\boxed{-\frac{7}{16}} \left( s + \boxed{4}\right) +\boxed{- \frac{7}{16}}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

I’m going to stop here.
 
  • Like
Likes Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top