Momentum in different referance frames

In summary: The final velocity of the ball is: ##-(u' - v)##.In summary, the first collision between a ball and a car creates a momentum imbalance in the car. The rate of change in momentum of the car is given by: -2(u - v)\sigma.
  • #1
Murilo T
12
7
Homework Statement
For some odd reason, you decide to throw baseballs at a car of mass ##M##, which is free to move frictionlessly on the ground. You throw the balls at the back of the car at speed ##u##, and at a mass rate of ##\sigma## (assume the rate is continuous, for simplicity). If the car starts at rest, find its speed and position as a function of time, assuming that the balls bounce elastically directly backwards off the back window.
Relevant Equations
## v_{i} - V_{i} = - (v_{f} - V_{f})##
I aready got the solution for this exercise. However, the solution used the referance frame from the car:
Let the speed of the car be ##v(t)##. Consider the collision of a ball of mass ##dm## with the car. In the instantaneous rest frame of the car, the speed of the ball is ##u - v##. In this frame, the ball reverses velocity when it bounces, so its change in momentum is ##-2( u - v )dm##. This is also the change in momentum in the lab frame, because the two frames are related by a given speed at any instant. Therefore, in the lab frame the car gains a momentum of ## 2( u - v )dm## from each ball that hits it. The rate of change in momentum of the car is thus:
##\frac {dp} {dt} = 2\sigma'(u - v)##
where ##\sigma' = \frac {dm} {dt}## is the rate at which mass hits the car. ##\sigma'## is related to the given ##\sigma## by ##\sigma'= \frac {\sigma( u - v)} {u}##. We therefore have ##M \frac {dv} {dt} = \frac {2( u - v)^2\sigma} {u}##.
What I'm trying to understand is the line:
This is also the change in momentum in the lab frame, because the two frames are related by a given speed at any instant.
Because before reading the solution, I was trying to solve it using the lab frame.
So this is my work so far:

Using conservation of momentum and kinetic energy

##dmu + Mv = M(v +dv) - dmu##

##\frac {dmu^2} {2} + \frac {Mv^2} {2} = \frac {M(v + dv)^2} {2} + \frac {dmu^2} {2}##

this gives ##dv = 2( u - v )##. It is also possible to use the principle that the relative velocity of the two objects after a collision is the negative of the relative velocity before the collision: ##v_{i} - V_{i} = -(v_{f} - V_{f})##

But when I try to find the rate of change in momentum of the car:

##\frac {dp} {dt} = \frac {Mdv} {dt} = \frac {2M(u - v)} {dt}##

The ##\sigma'## and the ##\sigma## doesn't even show up.

I also tried to solve it finding the rate of change in momentum of the balls, and then using the negative of it as the rate of change in momentum of the car, but it gives:
##\frac {dp_{balls}} {dt} = \frac {dm(2u)} {dt} = 2u\sigma' = 2(u - v)\sigma##

##\frac {dp_{balls}} {dt} = \frac {-dp_{car}} {dt}##

So the rate of change in momentum of the car is:
##-2(u - v)\sigma##

Is it possible to solve it using the lab frame? And if so, what mistake am I making?
 
Last edited:
Physics news on Phys.org
  • #2
Murilo T said:
Using conservation of momentum and kinetic energy

##dmu + Mv = M(V +dv) - dmu##
Perhaps think about this.
 
  • #3
PeroK said:
Perhaps think about this.
Sorry! It should be ##dmu + Mv = M(v +dv) -dmu##
I wrote the V instead of v
 
  • #4
Murilo T said:
Sorry! It should be ##dmu + Mv = M(v +dv) -dmu##
I wrote the V instead of v
The capitalisation of ##v## was not the problem!
 
  • #5
PeroK said:
The capitalisation of ##v## was not the problem!
Since in the first collision the car has zero speed, ##v = 0## and the expression becomes ##dmu = Mdv - dmu##.
But the mass isn't really an infinitesimal mass and the velocity isn't really an infinitesimal velocity. So I think that it could be rewrited to: ##m_{i}u + Mv_{i-1} = Mv_{i} - m_{i}u##, and ##v_{0} = 0##.
But I can't see how it can be solved for ##m_{i}##, ##v_{i-1}## and ##v_{i}##, because we don't know how many balls there are.
 
Last edited:
  • #6
Murilo T said:
Since in the first collision the car has zero speed, ##v = 0## and the expression becomes ##dmu = Mdv - dmu##.
But the mass isn't really an infinitesimal mass and the velocity isn't really an infinitesimal velocity. So I think that it could be rewrited to: ##m_{i}u + Mv_{i-1} = Mv_{i} - m_{i}u##, and ##v_{0} = 0##.
But I can't see how it can be solved for ##m_{i}##, ##v_{i-1}## and ##v_{i}##, because we don't know how many balls there are.
The ball doesn't rebound at the same speed in any reference frame. You have a higher separation speed after the collision than before, which is incompatible with conservation of energy.
 
  • Love
Likes Murilo T
  • #7
PeroK said:
The ball doesn't rebound at the same speed in any reference frame. You have a higher separation speed after the collision than before, which is incompatible with conservation of energy.
OMG, it looks like I was blind before!
Indeed, my conservation of energy: ##\frac {dmu^2} {2} + \frac {Mv^2} {2} = \frac {M(v + dv)^2} {2} + \frac {dmu^2} {2}##

gives ## \frac {Mv^2} {2} = \frac {M(v + dv)^2} {2}##!

The initial velocity of the ball and its final velocity are different:

##dmu + Mv = M(v + dv) - dmu'## (1.1)
##u - v = -(u' -(v + dv) )## (1.2)

Isolating ##u'## in 1.2: ##u' = u -2v - dv##
Plugging this result in 1.1 and solving for ##dv##: ##dv = \frac {2dm(u - v)} {M}##

Now using ##\frac {dp} {dt'} = M\frac {dv} {dt'}## and substituting dv for the result above: ##\frac {dp} {dt'} = 2\sigma'(u - v)##
##\sigma' = \frac {\sigma(u - v)} {u}##
So ##\frac {dp} {dt'} = M \frac {dv} {dt'} = \frac {2( u - v)^2\sigma} {u}##.

Thank you very much!
 
  • Like
Likes PeroK

1. What is momentum in different reference frames?

Momentum is a physical quantity that describes the motion of an object. In different reference frames, momentum can be defined as the product of an object's mass and its velocity. However, the specific values of an object's mass and velocity may vary depending on the reference frame being used.

2. How does momentum change in different reference frames?

In classical mechanics, momentum is a conserved quantity, meaning it does not change in different reference frames. This is known as the law of conservation of momentum. However, in special relativity, momentum can change in different reference frames due to the effects of time dilation and length contraction.

3. Can momentum be negative in different reference frames?

Yes, momentum can be negative in different reference frames. This occurs when an object is moving in the opposite direction of the chosen reference frame. In this case, the momentum will have a negative value, indicating the direction of the object's motion.

4. How is momentum affected by the speed of light in different reference frames?

In special relativity, the speed of light is constant in all reference frames. This means that as an object approaches the speed of light, its momentum will increase, but its velocity will not. This is due to the effects of time dilation and length contraction at high speeds.

5. What is the role of momentum in different reference frames in collision scenarios?

In collisions between objects, momentum is used to determine the outcome of the collision. In different reference frames, the total momentum of the system will remain constant before and after the collision, regardless of any changes in the individual momenta of the objects involved.

Similar threads

  • Introductory Physics Homework Help
Replies
3
Views
243
  • Introductory Physics Homework Help
Replies
1
Views
894
Replies
13
Views
898
  • Introductory Physics Homework Help
Replies
14
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
12
Views
868
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
223
  • Introductory Physics Homework Help
Replies
15
Views
269
Back
Top