Nanoscale electronics and impulse force

AI Thread Summary
In nanoscale electronics, electrons behave similarly to billiard balls, particularly in devices like ballistic electron transistors. The discussion centers on calculating the time required for a vertical force of 8.90·10^-13 N to achieve a deflection angle of 136° after an elastic collision with a wall at 45°. The problem involves breaking down velocity vectors to determine changes in momentum and applying the impulse formula. There is confusion regarding whether the force from the electrodes should be considered an impulse force or an average force. Clarification on this point is sought to solve the problem effectively.
xdctassonx
Messages
6
Reaction score
0
In nanoscale electronics, electrons can be treated like billiard balls. The figure shows a simple device currently under study in which an electron elastically collides with a rigid wall (a ballistic electron transistor). The green bars represent electrodes that can apply a vertical force of 8.90·10-13 N to the electrons. If an electron initially has velocity components vx = 1.30·105 m/s and vy = 0 and the wall is at 45.0°, the deflection angle θD is 90.0°. How long does the vertical force from the electrodes need to be applied to obtain a deflection angle of 136.°?



v=√(vx^2+vy^2)

Δp=J(impulse force)=F(average)*Δt

We had a similar problem in class where a baseball was pitched over home plate at 5 below the horizontal with a velocity of 40.23m/s and than hit back at 35° above the horizontal with a velocity of 49.17 m/s. the baseball weighed 0.145 kg and the bat made contact for1.2 ms. We solved this one by
Δvx=(49.17 m/s)(cos35°)-(40.23 m/s)(cos185°)=80.35 m/s
Δvy=(49.17 m/s)(sin 35°)-(40.23 m/s)(sin185°)=31.71 m/s
√((80.35 m/s)^2+(31.71 m/s)^2)=86.38 m/s
Δp=mΔv=(0.145 kg)(86.38 m/s)=12.5 kg m/s
and the we used impulse formula to solve for average force:
F(average)=Δp/Δt=(12.5 kg m/s)/0.0012s=10.4 kN

I understand that we had to break up the velocity vectors in order to solve for the change in velocity vectors, because that change will give us change in momentum. However I am really hung up on this problem when it hits a 45° wall. Would the the force applied by the electrodes be the impulse force or average force? If anyone could help me through this that would be great! Thanks!
 
Physics news on Phys.org
Here is a picture as well.
 

Attachments

  • P036figure.png
    P036figure.png
    10.4 KB · Views: 354
Does anyone have any idea?
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.

Similar threads

Back
Top