Need advice about applying to Ph.D. programs

In summary: But if it's not your thing, I would look into a program that teaches things at a more gradual intensity.
  • #1
Haorong Wu
413
89
Hello. I am currently in the second year of my master's program. My major is physics and my research area is high-dimensional entanglement in curved spacetime. During my studies, I developed a strong interest in quantum gravity (QG) and intend to pursue a Ph.D. in this field. I have a few questions before I apply for Ph.D. programs.

1. Is QG a promising field? I know several QG theories, such as superstring theory and quantum loop theory. In the physics community, which theory is more widely accepted?

2. Would you recommend any colleges outside of the United States that offer relevant research groups (funding or scholarships required)? I doubt I would be able to obtain a visa to visit the United States. Also, because my profile is not competitive, as I will explain below, I am not considering top colleges.

3. My undergraduate major was automation ten years ago. Regrettably, I did not take many physics classes at the time. In my master's degree, I took advanced quantum mechanics and general relativity classes. My QM score is 88 out of 100, whereas my GR score is 99 out of 100. Could the classes in my master's program somewhat compensate for my lack of physics coursework?

My other profile is: Toefl: 107; GRE: 153+170+3.5. Not competitive, but I hope they will suffice. As the first author, I have 2 papers that were submitted under review. One is related to gravitational fluctuation and the other one is related to the Unruh effects. My current study is related to the quantum gravity effect and I hope I could write a paper on it.

Thanks in advance for any suggestions.
 
Physics news on Phys.org
  • #2
I cannot help you with the specifics of your physics research, but I can give you some general advice that I give my students.

Do not lock into one specialization, especially a topic studied by only a few highly-competitive people on Earth. You may be able to get into a program and become the elite world expert. But not everyone gets to be Stephen Hawking. Have a back-up plan. Or two.

You want to know which direction is more widely accepted? Study both. Then no matter which way the winds blows, you're ready to go.

Read a bunch of research journals and papers on the topics that interest you.
Then, look at who wrote the papers you like the most.
Then, find out where THEY went to school, and send them an email.
Tell them how much you enjoyed their research and ask for their advice.
How did they decide what to study?
How did they make their career choices?
How did their lives change over time?
Don't just research the topic ... research the people.

Think outside the box. A lot of what you're talking about is theoretical. But maybe it's got some cool applications that you haven't considered. Physicists make great programmers for A.I. systems, and can build predictive algorithms for stock-market applications.

For example, I started out as a programmer, but got my degrees in physics. The physics thing was a struggle, so I got into the computer industry. When everyone got laid off, and the market was flooded with competing programmers, I could go back and teach physics. In hindsight, I might have liked to have studied more genetics. Or geology. Or landscaping. Life is weird.

One of the biggest problems I see with people in research is that they run out of steam about 5 or 10 years into their research. They have to constantly find a new direction, a new angle otherwise they get REALLY bored, and struggle to stay relevant. It never hurts to make a list of all the things you're interested in to refer back to later in your life.

Just my opinion.
 
  • Like
Likes symbolipoint, Haorong Wu and berkeman
  • #3
The thing about quantum gravity is, it's going to be massively heavily mathematical. You will be doing tons of metrics and integrals and maybe some topology and many other related things.

Most undergrad physics degrees include some calculus and algebra, but usually only up to 3-D integrals and gradients and surface integrals and maybe, if you are fortunate, some stuff about Stoke's theorm and relation to conservation laws and such. I think you must have had most of that in order to get good marks in GR.

That is, most people who do QG will have to learn a massive ton of math as part of their degree because they didn't learn it as an undergrad. If you are good with that, great! Consider the amount of math I presume you learned in your general relativity class, and consider doing about 3 years worth of the same intensity. Then probably 1 to 2 years of writing a thesis, also at the same intensity. If that sounds like fun then go ahead.
 

1. What are the basic requirements for applying to a Ph.D. program?

The specific requirements may vary between universities and programs, but generally, applicants will need to have a bachelor's or master's degree in a related field, a strong academic record, and relevant research experience. Additionally, most programs will require applicants to submit letters of recommendation, a personal statement, and standardized test scores (such as the GRE).

2. What can I do to make my application stand out?

Aside from meeting the basic requirements, it's important to have a strong and well-written personal statement that highlights your research interests and goals. It's also helpful to have research experience, publications, or presentations that demonstrate your knowledge and skills in your field. Additionally, having strong letters of recommendation from professors or mentors who can speak to your academic abilities and potential can make a big difference.

3. How many Ph.D. programs should I apply to?

This will depend on your individual circumstances, but a good rule of thumb is to apply to at least 3-5 programs. This will give you a range of options and increase your chances of being accepted. However, it's important to also consider the time and financial commitment of applying to multiple programs, so make sure to choose programs that align with your interests and goals.

4. Can I apply to Ph.D. programs in a different field than my undergraduate degree?

Yes, it is possible to apply to Ph.D. programs in a different field than your undergraduate degree. However, you may need to take additional coursework or demonstrate your knowledge and skills in the new field through research experience or relevant coursework. It's important to carefully research the program and its requirements before applying.

5. How important are standardized test scores in the application process?

While standardized test scores (such as the GRE) are commonly required for Ph.D. program applications, they are not the only factor that admissions committees consider. Your academic record, research experience, personal statement, and letters of recommendation are also important. Some programs may place more emphasis on test scores than others, so it's important to research the specific program's requirements and consider how your scores may impact your application.

Similar threads

  • STEM Academic Advising
Replies
6
Views
1K
  • STEM Academic Advising
Replies
4
Views
796
  • STEM Academic Advising
Replies
3
Views
1K
  • STEM Academic Advising
Replies
5
Views
262
  • STEM Academic Advising
Replies
2
Views
947
Replies
7
Views
1K
  • STEM Academic Advising
Replies
27
Views
2K
  • STEM Academic Advising
Replies
10
Views
1K
  • STEM Academic Advising
Replies
13
Views
2K
  • STEM Academic Advising
Replies
9
Views
1K
Back
Top