MHB Pharaoh's Taylor series question from Yahoo Answers

CaptainBlack
Messages
801
Reaction score
0
Part 1 of Pharaoh's Taylor series and modified Euler question from Yahoo Answers

consider van der pol's equation
y" - 0.2(1-y^2)y' + y = 0 y(0)=0.1 y'(0)=0.1
1)
You are asked to find the approximate solution for this problem using the Taylor series
method. Your expansion should include the first three non-zero terms and you should
work to six decimal places accuracy. First find the approximate solutions for both y (0.1)
and y’(0.1) using the first three non-zero terms of Taylor series expansion for each
function and then use this information to calculate the approximate solution at x = 0.2.
The Taylor series expansion about \(t=0\) is of the form:
\(y(t)=y(0)+y'(0)t+\frac{y''(0)t^2}{2}+.. \)​
We are given \(y(0)\) and \(y'(0)\) in the initial condition, and so from the equation we have:
\(y''(0) = 0.2(1-(y(0))^2)-y(0)=0.2(1-0.1^2)-0.1=-0.0802\)​
So the Taylor series about \(t=0\) is:
\(y(t)=0.1+0.1t-0.0401t^2+... \)​
and using the first three terms of this we have \(y(0.1)\approx 0.109599\), Also:
\(y'(t)=0.1-0.0802t+...\)​
and so \(y'(0.1) \approx 0.09198\)Now the Taylor expansion about \(t=0.1\) is:

\(y(t)=y(0.1)+(t-0.1)y'(0.1)+\frac{(t-0.1)^2y''(0.1)}{2}+...\)​
where \(y''(0.1)=0.2\left(1-(y(0.1))^2\right)y'(0.1)-y(0.1)=-0.08178796\).So:

\(y(0.2)\approx 0.109599+0.1\times 0.0198-0.1^2\times 0.8178796 = 0.108789 \) to 6 six DP​
 
Last edited:
Mathematics news on Phys.org
.2)
Next, the modified Euler method can be used to find the approximate solution for this problem. The modified Euler method is given by:

\(y_{n+1}=y_n+hf(x_n+\frac{h}{2},y_n+\frac{h}{2}f(x_n,y_n))\)

where \(f(x,y)=y"-0.2(1-y^2)y'+y\).

Using \(h=0.1\) and starting with \(y_0=0.1\), we can calculate the values of \(y_1\) and \(y_2\) as follows:

\(y_1\approx 0.1+0.1\left(0.1+\frac{0.1}{2}\left(0.1-0.2(1-0.1^2)0.1+0.1\right)\right)\approx 0.109625\)

\(y_2\approx 0.109625+0.1\left(0.2+\frac{0.1}{2}\left(0.2-0.2(1-0.109625^2)0.2+0.109625\right)\right)\approx 0.10961\)

So, the approximate solution at \(x=0.2\) using the modified Euler method is \(y(0.2)\approx 0.10961\). This is slightly different from the value obtained using the Taylor series method, but both methods provide a good approximation to the actual solution.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top