Problems deriving the conjugate momenta for the ADM formalism

In summary, The ADM formalism is a mathematical framework used to describe the dynamics of gravity in general relativity. It breaks down spacetime into space and time, and the conjugate momenta are necessary primary variables in understanding the behavior of gravity. The main challenge in deriving them is the non-linear nature of general relativity, and the process involves a Legendre transformation on the Hamiltonian. Alternative methods, such as the 3+1 formalism, can also be used to derive the conjugate momenta.
  • #1
TerryW
Gold Member
191
13

Homework Statement

If you look in Wikipedia for ADM formalism, you are given a Derivation, which starts from the Lagrangian:

##\mathfrak {L}## = (4)R ##\sqrt{^{(4)}g}## and moves rapidly to...

The conjugate momenta can then be computed as

##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}## ...(1)
using standard techniques and definitions (my italics)

From MTW chapter 21 I have:

##\pi^{ij} = \frac {\delta (action) }{\delta (g_{ij}) }## ...... (21.91)

and from D'Inverno Chapter 11, I have

##\frac {\delta (action) }{\delta (g_{\alpha\beta}) } = (\frac {\partial (action) }{\partial (g_{\alpha\beta}) }) - (\frac {\partial (action) }{\partial (g_{\alpha\beta,\gamma}) }) _{,\gamma}## + ##(\frac {\partial (action) }{\partial (g_{\alpha\beta,\gamma\delta})})_{,\gamma\delta} ##...(11.25)

I have tried to produce ##\pi^{ij}## as above starting with work on the more general

##(\frac {\partial}{\partial (g_{\alpha\beta ,\gamma}) })g^{\mu\nu}g^{\gamma\alpha}g^{\beta\delta}(\Gamma_{\gamma\beta\alpha}\Gamma_{\delta\mu\nu} - \Gamma_{\gamma\beta\nu}\Gamma_{\delta\mu\alpha})##

ie just taking the derivative wrt ##g_{\alpha\beta,\gamma}## and ignoring the ## \sqrt {^{(4)}g}## and the second derivative wrt ##\gamma## for now.

After much fiddling with indices, I have ended up with (see more complete workings below)

##=\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu} - \frac{1}{2}g^{\mu\beta}g^{\nu\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}+\frac{1}{2}g^{\beta\gamma}g^{\mu\delta}g^{\nu\alpha}\Gamma_{\delta\mu\nu} - \frac{1}{2}g^{\beta\mu}g^{\delta\gamma}g^{\nu\alpha}\Gamma_{\delta\mu\nu}##

##=\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu} +\frac{1}{2}g^{\beta\gamma}g^{\mu\delta}g^{\nu\alpha}\Gamma_{\delta\mu\nu} -g^{\beta\mu}g^{\alpha\nu}g^{\gamma\delta}\Gamma_{\delta\mu\nu}##

I've also reached the same result by working on the 18 terms obtained when you multiply out
##\frac{1}{2}(g_{γβ,α} + g_{γα,β} - g_{αβ,γ})\frac{1}{2}(g_{δμ,ν} + g_{δν,μ} - g_{νμ,δ}) - \frac{1}{2}(g_{γβ,ν} + g_{γν,β} - g_{νβ,γ})\frac{1}{2}(g_{δμ,α} + g_{δα,μ} - g_{αμ,δ})##
I can manipulate ##\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}## into ##\frac{1}{2}g_{μν} \Gamma ^γ\, _{ρσ} g^{ρσ} g^{αμ} g^{βν}##

and I can manipulate ##g^{\beta\mu}g^{\alpha\nu}g^{\gamma\delta}\Gamma_{\delta\mu\nu}## into ##\Gamma^\gamma_{\mu\nu}g^{α\nu} g^{βμ}##

I'd like to be able to transform ##\frac{1}{2}g^{\beta\gamma}g^{\mu\delta}g^{\nu\alpha}\Gamma_{\delta\mu\nu}## into ##\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}##
but I can't see a way of doing this.

This would then give me:

##g_{μν} \Gamma ^γ\, _{ρσ} g^{ρσ} g^{αμ} g^{βν} - \Gamma^\gamma_{\mu\nu}g^{αμ} g^{β\nu}##

which would become

##g_{μν} \Gamma ^γ\, _{ρσ} g^{ρσ} g^{iμ} g^{jν} - \Gamma^\gamma_{\mu\nu}g^{i\mu} g^{j\nu}##

So my problems are:

1. Am I missing something which would enable me to transform ##\frac{1}{2}g^{\beta\gamma}g^{\mu\delta}g^{\nu\alpha}\Gamma_{\delta\mu\nu}## into ##\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}##?

2. How do I justify the selection of '0' (and only '0') for γ ?

3. How to I justify limiting the other indices to just the 3D indices. ?

4. Why is the further differentiation wrt γ being ignored?

Homework Equations

The Attempt at a Solution


[/B]
##(\frac {\partial}{\partial (g_{\alpha\beta ,\gamma}) })g^{\mu\nu}g^{\gamma\alpha}g^{\beta\delta}(\Gamma_{\gamma\beta\alpha}\Gamma_{\delta\mu\nu} - \Gamma_{\gamma\beta\nu}\Gamma_{\delta\mu\alpha})##

##= (\frac {\partial }{\partial (g_{\alpha\beta ,\gamma})}g^{\mu\nu}g^{\gamma\alpha}g^{\beta\delta}\Gamma_{\gamma\beta\alpha}\Gamma_{\delta\mu\nu} - g^{\mu\alpha}g^{\gamma\nu}g^{\beta\delta}\Gamma_{\gamma\beta\alpha}\Gamma_{\delta\mu\nu})##

##= (\frac {\partial }{\partial (g_{\alpha\beta ,\gamma}) }g^{\mu\nu}g^{\gamma\alpha}g^{\beta\delta}\Gamma_{\alpha\beta\gamma}\Gamma_{\delta\mu\nu} - g^{\mu\gamma}g^{\alpha\nu}g^{\beta\delta}\Gamma_{\alpha\beta\gamma}\Gamma_{\delta\mu\nu})##

##= \frac{1}{2}(g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}) + \Gamma_{\alpha\beta\gamma}\frac {\partial }{\partial (g_{\alpha\beta ,\gamma})}(g^{\mu\nu}g^{\alpha\gamma}g^{\beta\delta}\Gamma_{\delta\mu\nu}) - \frac{1}{2}(g^{\mu\beta}g^{\nu\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}) - \Gamma_{\alpha\beta\gamma}\frac {\partial}{\partial (g_{\alpha\beta ,\gamma}) }(g^{\mu\gamma}g^{\alpha\nu}g^{\beta\delta}\Gamma_{\delta\mu\nu})##

##=\frac{1}{2}(g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}) - \frac{1}{2}(g^{\mu\beta}g^{\nu\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}) + \Gamma_{\delta\mu\nu}\frac {\partial }{\partial (g_{\alpha\beta ,\gamma})}(g^{\beta\gamma}g^{\nu\delta}g^{\mu\alpha}\Gamma_{\alpha\beta\gamma}) - \Gamma_{\delta\mu\nu}\frac {\partial}{\partial (g_{\alpha\beta ,\gamma}) }(g^{\beta\nu}g^{\gamma\delta}g^{\mu\alpha}\Gamma_{\alpha\beta\gamma})##

##=\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu} - \frac{1}{2}g^{\mu\beta}g^{\nu\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu} + \frac{1}{2}(g^{\beta\gamma}g^{\nu\delta}g^{\mu\alpha}+g^{\beta\gamma}g^{\nu\delta}g^{\mu\alpha}-g^{\beta\alpha}g^{\nu\delta}g^{\mu\gamma})\Gamma_{\delta\mu\nu}- \frac{1}{2}(g^{\beta\nu}g^{\delta\gamma}g^{\mu\alpha}+g^{\gamma\nu}g^{\beta\delta}g^{\mu\alpha}-g^{\beta\nu}g^{\delta\alpha}g^{\mu\gamma})\Gamma_{\delta\mu\nu}##

I reckon I can interchange β and γ because ##\Gamma_{αβγ} = \Gamma_{αγβ}##
and I can interchange μ and ν because ##\Gamma_{δμν} = \Gamma_{δνμ}##
Also I can interchange α and β because ##\pi^{αβ} = \pi^{βα}##

Using these two tools, I can reduce
##\frac{1}{2}(g^{\beta\gamma}g^{\nu\delta}g^{\mu\alpha}+g^{\beta\gamma}g^{\nu\delta}g^{\mu\alpha}-g^{\beta\alpha}g^{\nu\delta}g^{\mu\gamma})\Gamma_{\delta\mu\nu}- \frac{1}{2}(g^{\beta\nu}g^{\delta\gamma}g^{\mu\alpha}+g^{\gamma\nu}g^{\beta\delta}g^{\mu\alpha}-g^{\beta\nu}g^{\delta\alpha}g^{\mu\gamma})\Gamma_{\delta\mu\nu}##
to
##\frac{1}{2}(g^{\beta\gamma}g^{\mu\delta}g^{\nu\alpha} - g^{\beta\nu}g^{\delta\gamma}g^{\mu\alpha})\Gamma_{\delta\mu\nu}##

Giving me the result:

##\frac{1}{2}g^{\mu\nu}g^{\beta\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu} - \frac{1}{2}g^{\mu\beta}g^{\nu\alpha}g^{\gamma\delta}\Gamma_{\delta\mu\nu}+\frac{1}{2}g^{\beta\gamma}g^{\mu\delta}g^{\nu\alpha}\Gamma_{\delta\mu\nu} - \frac{1}{2}g^{\beta\mu}g^{\delta\gamma}g^{\nu\alpha}\Gamma_{\delta\mu\nu}##
 

1. What is the ADM formalism?

The ADM formalism, named after its developers Arnowitt, Deser, and Misner, is a mathematical framework used to describe the dynamics of gravity in general relativity. It breaks down the spacetime into space and time, allowing for a more intuitive understanding of the theory.

2. Why is it necessary to derive the conjugate momenta in the ADM formalism?

The conjugate momenta are necessary in the ADM formalism because they are the primary variables used to describe the dynamics of gravity. They correspond to the momentum of the gravitational field, which is an important quantity in understanding the behavior of gravity.

3. What are the challenges in deriving the conjugate momenta for the ADM formalism?

One of the main challenges in deriving the conjugate momenta in the ADM formalism is the highly non-linear nature of general relativity. This makes it difficult to express the equations of motion in a simple and elegant form, as is desired in the ADM formalism.

4. What is the process of deriving the conjugate momenta for the ADM formalism?

The process of deriving the conjugate momenta in the ADM formalism involves performing a Legendre transformation on the Hamiltonian, which is a function of the canonical variables, to obtain a new set of variables that describe the dynamics of the system. This process can be complex and often involves solving a set of coupled partial differential equations.

5. Are there alternative methods to deriving the conjugate momenta in the ADM formalism?

Yes, there are alternative methods to deriving the conjugate momenta in the ADM formalism. One such method is the 3+1 formalism, which involves decomposing spacetime into three spatial dimensions and one time dimension. This approach can simplify the equations and make it easier to derive the conjugate momenta.

Similar threads

  • Advanced Physics Homework Help
Replies
2
Views
475
  • Advanced Physics Homework Help
Replies
18
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
930
  • Advanced Physics Homework Help
Replies
0
Views
297
  • Advanced Physics Homework Help
Replies
5
Views
3K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
5
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
666
  • Advanced Physics Homework Help
Replies
1
Views
336
Back
Top