Problems with vector questions

  • Thread starter Thread starter aaron27
  • Start date Start date
  • Tags Tags
    Vector
aaron27
Messages
6
Reaction score
0
Three vectors are expressed in terms of other three vectors
in the form of

a=a1α + a2β + a3γ
b=b1α + b2β + b3γ
c=c1α + c2β + c3γ

How to show that a.(bxc) = λ α.(βxγ) and find out λ?

I knew the first part where we carry out dot and product rule for vectors a.(bxc),
but the other side of the equation I have no idea how to start with.
Anyone knows how to do this?
Thanks.
 
Physics news on Phys.org
Can you express each of the greek-letter vectors in terms of the latin-letter vectors?
 
a=a1(alpha) + a2(beta) + a3(gamma)
b=b1(alpha) + b2(beta) + b3(gamma)
c=c1(alpha) + c2(beta) + c3(gamma)

How to show that a.(bxc) = λ (alpha) .(beta x gamma) and find out λ?
 
##\alpha = f(a,b,c)##
##\beta = g(a,b,c)##
##\gamma = h(a,b,c)##

what are f g and h?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top