MHB Ross' question via email about a derivative.

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative Email
AI Thread Summary
The derivative of the function y = 16[ sinh(7t) ]^3 cosh(7t) with respect to t can be calculated using the product rule. The derivatives of the individual components are found, leading to the expression for dy/dt. An alternative method involves simplifying the function using hyperbolic identities, ultimately yielding the same derivative result. The final derivative is expressed as dy/dt = 56 cosh(28t) - 56 cosh(14t). Both methods confirm the equivalence of the results, showcasing different approaches to differentiation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the derivative (with respect to t) of $\displaystyle \begin{align*} y = 16\,\left[ \sinh{(7\,t)} \right] ^3 \cosh{(7\,t )} \end{align*}$?

One way to do this is to apply the product rule. To do this, we need to know the derivative of each factor.

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t} \, \left\{ \left[ \sinh{(7\,t)} \right] ^3 \right\} &= 7 \cdot \cosh{( 7\,t )} \cdot 3\left[ \sinh{(7\,t)} \right] ^2 \\ &= 21\cosh{(7\,t)}\left[ \sinh{(7\,t)} \right] ^2 \end{align*}$

and

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t}\,\left[ \cosh{(7\,t)} \right] = 7\,\sinh{(7\,t)} \end{align*}$

so that means

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}t} &= 16 \, \left\{ \left[ \sinh{(7\,t)} \right] ^3 \cdot 7\,\sinh{(7\,t)} + 21\cosh{(7\,t)}\left[ \sinh{(7\,t)} \right] ^2 \cdot \cosh{(7\,t)} \right\} \\ &= 112\,\left[ \sinh{(7\,t)} \right] ^2 \, \left\{ \left[ \sinh{(7\,t)} \right] ^2 + 3\, \left[ \cosh{(7\,t)} \right] ^2 \right\} \end{align*}$A more sophisticated method is to use hyperbolic identities to simplify the function before trying to differentiate.

Since $\displaystyle \begin{align*} \sinh{(2\,x)} \equiv 2\sinh{(x)}\cosh{(x)} \end{align*}$ and $\displaystyle \begin{align*} \cosh{(2\,x)} \equiv 1 + 2\,\left[ \sinh{(x)} \right] ^2 \end{align*}$ that means

$\displaystyle \begin{align*} y &= 16\,\left[ \sinh{(7\,t)} \right] ^3\cosh{(7\,t)} \\ &= 8 \,\left[ \sinh{(7\,t)} \right] ^2 \cdot 2\sinh{(7\,t)}\cosh{(7\,t)} \\ &= 8 \cdot \frac{1}{2} \, \left[ \cosh{(14\,t)} - 1 \right] \sinh{(14\,t)} \\ &= 4\cosh{(14\,t)}\sinh{(14\,t)} - 4\sinh{(14\,t)} \\ &= 2\cdot 2\cosh{(14\,t)}\sinh{(14\,t)} - 4\sinh{(14\,t)} \\ &= 2 \sinh{(28\,t)} - 4\sinh{(14\,t)} \\ \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 2 \cdot 28 \cosh{(28\,t)} - 4\cdot 14\cosh{(14\,t)} \\ &= 56\cosh{(28\,t)} - 56\cosh{(14\,t)} \end{align*}$

This can be shown to be equivalent to the answer given above.
 
Last edited:
Mathematics news on Phys.org
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top