Showing that this equation is a solution to the linear wave equation

In summary: You don't need the chain rule for$$\frac{d}{dx}(x^2+x).$$ Parentheses, brackets, etc. don't automatically mean the chain rule.Based on what you initially wrote, you seemed to be thinking$$\frac{\partial}{\partial x} \frac{1}{x-vt} =\frac{1}{\frac{\partial}{\partial x}{(x-vt)}} = \frac 11 = 1.$$ I hope you see that the first equality is wrong. That's not how differentiation works.Many thanks for explaining that!I guess we also have to use chain rule here because we can't bring the x up because
  • #1
ChiralSuperfields
1,226
132
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1675825070687.png

Where equation 16.27 is the wave equation.

The solution is
1675825115838.png

1675825132452.png


I don't understand how they got the second partial derivative of ##y## with respect to
##x## circled in red.

I thought it would be ##1## since ##v## and ##t## are constants

Many thanks!
 
Physics news on Phys.org
  • #2
Callumnc1 said:
Homework Statement:: Please see below
Relevant Equations:: Please see below

For this problem,
View attachment 321932
Where equation 16.27 is the wave equation.

The solution is
View attachment 321933
View attachment 321934

I don't understand how they got the second partial derivative of ##y## with respect to
##x## circled in red.

I thought it would be ##1## since ##v## and ##t## are constants

Many thanks!
You are likely over-thinking this. Use the chain rule.

Big hint:
##\dfrac{ \partial }{ \partial x} \dfrac{1}{x - vt} \rightarrow \dfrac{ \partial }{ \partial u } \dfrac{1}{u} \cdot \dfrac{ \partial u}{ \partial x}##

What would you use for u?

-Dan
 
  • Like
Likes ChiralSuperfields
  • #3
topsquark said:
You are likely over-thinking this. Use the chain rule.

Big hint:
##\dfrac{ \partial }{ \partial x} \dfrac{1}{x - vt} \rightarrow \dfrac{ \partial }{ \partial u } \dfrac{1}{u} \cdot \dfrac{ \partial u}{ \partial x}##

What would you use for u?

-Dan
Thank you for your reply @topsquark !

##u = x- vt##

Sorry do you please know why we need to use the chain rule?

Thank you!
 
  • #4
Callumnc1 said:
why we need to use the chain rule?
Because that is what tells you how to differentiate ##\frac 1{x-vt}## wrt ##x##. First, you differentiate it wrt ##x-vt##, 'cos that's easy, then you multiply by the derivative of ##x-vt## wrt ##x##.
 
  • Like
Likes ChiralSuperfields and topsquark
  • #5
Isn't ##y = f(x - vt)## a solution to the wave equation, for any twice differentiable ##f##?
 
  • Like
Likes ChiralSuperfields, topsquark and haruspex
  • #6
Callumnc1 said:
I thought it would be ##1## since ##v## and ##t## are constants
Perhaps you "misspoke" here? ##t## is the time variable, as you must be aware?
 
  • Like
Likes ChiralSuperfields and topsquark
  • #7
haruspex said:
Because that is what tells you how to differentiate ##\frac 1{x-vt}## wrt ##x##. First, you differentiate it wrt ##x-vt##, 'cos that's easy, then you multiply by the derivative of ##x-vt## wrt ##x##.
Thank you for your reply @haruspex !

Sorry could you please explain a bit more why we need to use the chain rule? I have not done partial derivatives from multivariate calculus yet.

Many thanks!
 
  • #8
PeroK said:
Isn't ##y = f(x - vt)## a solution to the wave equation, for any twice differentiable ##f##?
Thank you for your reply @PeroK !
 
  • #9
Redbelly98 said:
Perhaps you "misspoke" here? ##t## is the time variable, as you must be aware?
Thank you for your reply @Redbelly98 !

Yeah I agree that ##t## is a time variable, however, I thought I was meant to treat it has a constant along with ##v## since we are partially differentiating ##y## with respect to ##x##.

Many thanks!
 
  • #10
Callumnc1 said:
Yeah I agree that ##t## is a time variable, however, I thought I was meant to treat it has a constant along with ##v## since we are partially differentiating ##y## with respect to ##x##.
Ah, okay. Yes, for the purposes of doing partial derivatives w.r.t. other variables, that's right.
 
  • Like
Likes ChiralSuperfields
  • #11
Redbelly98 said:
Ah, okay. Yes, for the purposes of doing partial derivatives w.r.t. other variables, that's right.
Thank you for your reply @Redbelly98 !
 
  • #12
haruspex said:
Because that is what tells you how to differentiate ##\frac 1{x-vt}## wrt ##x##. First, you differentiate it wrt ##x-vt##, 'cos that's easy, then you multiply by the derivative of ##x-vt## wrt ##x##.
I guess one way of thinking about it is thinking that ##x -vt## is in brackets to the power of 1 since you must always use chain rule for brackets. I guess we also have to use chain rule here because we can't bring the x up because it is with the other terms.

Let me know if I am correct!

Many thanks!
 
  • #13
Callumnc1 said:
I guess one way of thinking about it is thinking that ##x -vt## is in brackets to the power of 1 since you must always use chain rule for brackets. I guess we also have to use chain rule here because we can't bring the x up because it is with the other terms.

Let me know if I am correct!

Many thanks!
$$\frac d {dx}\bigg (\frac 1 {f(x)}\bigg ) = -\frac {f'(x)}{(f(x))^2}$$
 
  • Like
Likes ChiralSuperfields
  • #14
PeroK said:
$$\frac d {dx}\bigg (\frac 1 {f(x)}\bigg ) = -\frac {f'(x)}{(f(x))^2}$$
Thank you for your reply @PeroK!
 
  • #15
Callumnc1 said:
I guess one way of thinking about it is thinking that ##x -vt## is in brackets to the power of 1 since you must always use chain rule for brackets.
You don't need the chain rule for
$$\frac{d}{dx}(x^2+x).$$ Parentheses, brackets, etc. don't automatically mean the chain rule.

Based on what you initially wrote, you seemed to be thinking
$$\frac{\partial}{\partial x} \frac{1}{x-vt} =\frac{1}{\frac{\partial}{\partial x}{(x-vt)}} = \frac 11 = 1.$$ I hope you see that the first equality is wrong. That's not how differentiation works.

Because you're differentiating a quotient, you could use the quotient rule and not use the chain rule. Most people, however, would use the chain rule because the numerator is a constant. It might help to rewrite the problem as
$$\frac{\partial}{\partial x} (x-vt)^{-1}.$$

Callumnc1 said:
I guess we also have to use chain rule here because we can't bring the x up because it is with the other terms.
Right.
 
  • Like
Likes ChiralSuperfields and PeroK
  • #16
vela said:
You don't need the chain rule for
$$\frac{d}{dx}(x^2+x).$$ Parentheses, brackets, etc. don't automatically mean the chain rule.

Based on what you initially wrote, you seemed to be thinking
$$\frac{\partial}{\partial x} \frac{1}{x-vt} =\frac{1}{\frac{\partial}{\partial x}{(x-vt)}} = \frac 11 = 1.$$ I hope you see that the first equality is wrong. That's not how differentiation works.

Because you're differentiating a quotient, you could use the quotient rule and not use the chain rule. Most people, however, would use the chain rule because the numerator is a constant. It might help to rewrite the problem as
$$\frac{\partial}{\partial x} (x-vt)^{-1}.$$Right.
Thank you for your reply @vela! That is very helpful!
 

Similar threads

  • Introductory Physics Homework Help
Replies
9
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
960
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
962
  • Introductory Physics Homework Help
Replies
11
Views
1K
  • Introductory Physics Homework Help
Replies
8
Views
1K
  • Introductory Physics Homework Help
Replies
7
Views
822
  • Introductory Physics Homework Help
Replies
23
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
8
Views
614
Back
Top