Fourier transform of triangle diagram

  • #1
LCSphysicist
645
161
Homework Statement
Show that the Fourier transform of the triangle diagram in x space in Fig. 1.3b is the
star diagram in p space in Fig. 1.3c.
Relevant Equations
.
1709922409314.png


OBS: Ignore factors of ## (2 \pi) ##, interpret any differential ##dx,dp## as ##d^4x,d^4p##, ##\int = \int \int = \int ... \int##. I am using ##x,y,z## instead of ##x_i##.

Honestly, i am a little confused how to show this "triangle-star duality". Look, the propagators in positions space gives me ##\int \frac{e^{ip(x-y)}}{p^2+m^2} dp##

$$
\int d x d y d z dp_x dp_y dp_z \frac{1}{p_x^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i(p_x (x-y) + p_y (y-z) + p_z (z-x))} e^{-i(q_1 x + q_2 y + q_3 z)}
$$



$$
\int d y d z dp_x dp_y dp_z \frac{1}{p_x^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i(p_x (-y) + p_y (y-z) + p_z (z))} e^{-i( q_2 y + q_3 z)} \delta(p_x - p_z - q_1)
$$


$$
\int d y d z dp_y dp_z \frac{1}{(p_z+q_1)^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i((p_z + q_1) (-y) + p_y (y-z) + p_z (z))} e^{-i( q_2 y + q_3 z)}
$$



$$
\int d z dp_y dp_z \frac{1}{(q_2 - p_y)^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i( + p_y (-z) + p_z (z))} e^{-i( q_3 z)} \delta (-p_z - q_1 + p_y - q_2)
$$



$$
\int d z dp_z \frac{1}{(q_1+p_z)^2+m^2} \frac{1}{(q_2 + q_1 + p_z)^2+m^2} \frac{1}{p_z^2+m^2} e^{i( (q_2+q_1+p_z)(-z) + p_z (z))} e^{-i( q_3 z)}
$$

$$
\int dp_z \frac{1}{(q_1+p_z)^2+m^2} \frac{1}{(q_2 + q_1 + p_z)^2+m^2} \frac{1}{p_z^2+m^2} \delta(q_1+q_2+q_3)
$$

If there was no ##p_z## integral, i think the answer would be correct (the ##\delta## i got is an indication of it, i think). Where did i committed an error?
 
Physics news on Phys.org
  • #2
LCSphysicist said:
Homework Statement: Show that the Fourier transform of the triangle diagram in x space in Fig. 1.3b is the
star diagram in p space in Fig. 1.3c.
Relevant Equations: .

View attachment 341469
Can you define both the diagram and what you mean by FT?
Are you talking about functions in 2D (images)?
 
  • #3
Philip Koeck said:
Can you define both the diagram and what you mean by FT?
Are you talking about functions in 2D (images)?
By FT i mean Fourier Transform.
These images represents Feynman Diagrams, actually. In position (triangle) and momentum (star) space.
 
  • Like
Likes Philip Koeck

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
960
  • Advanced Physics Homework Help
Replies
19
Views
833
  • Advanced Physics Homework Help
Replies
16
Views
914
Replies
15
Views
3K
  • Advanced Physics Homework Help
Replies
3
Views
506
  • Advanced Physics Homework Help
Replies
16
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
799
  • Advanced Physics Homework Help
Replies
3
Views
2K
Replies
1
Views
809
  • Advanced Physics Homework Help
Replies
8
Views
1K
Back
Top