Using the Divergence Theorem to Prove Green's Theorem

In summary, Green's theorem states that the integral of the divergence of two vectors, A and B, over a region is equal to the integral of the dot product of the two vectors over the boundary of the region. This can be proven by applying Gauss's Divergence Theorem to the vectors <psi, nabla psi> and <phi, nabla phi>, and then subtracting the resulting integrals. This cancels out the dot product at the beginning and results in the desired form of Green's theorem.
  • #1
B3NR4Y
Gold Member
170
8

Homework Statement


Prove Green's theorem
[tex]
\int_{\tau} (\varphi \nabla^{2} \psi -\psi\nabla^{2}\varphi)d\tau = \int_{\sigma}(\varphi\nabla\psi
-\psi\nabla\varphi)\cdot d\vec{\sigma}[/tex]

Homework Equations


[tex] div (\vec{V})=\lim_{\Delta\tau\rightarrow 0} \frac{1}{\Delta\tau} \int_{\sigma} \vec{V} \cdot d\vec{\sigma} [/tex]
is the divergence, and Gauss's divergence theorem says
[tex]\int_{\tau} div(\vec{V}) d\tau=\int_{\sigma} V \cdot d\vec{\sigma} [/tex]
[tex] div(\vec{V})=\nabla \cdot \vec{V} [/tex]

The Attempt at a Solution


The first thing I'll do is apply Gauss's Divergence theorem to the vectors [itex] \vec{A} = \varphi\nabla\psi [/itex] and [itex]B=\psi\nabla\varphi[/itex]
Applied to A:
[itex]\nabla \cdot \vec{A}=\nabla \cdot \varphi\nabla\psi =\varphi \nabla^{2} \psi \rightarrow \int_{\tau} div(\vec{A}) d\tau= \int_{\tau} \varphi \nabla^{2} \psi \, d\tau = \int_{\sigma} \varphi \nabla\psi \,\cdot d\vec{\sigma} [/itex]

Applied to B
[itex]\nabla \cdot \vec{B}=\nabla \cdot \psi\nabla\varphi =\psi \nabla^{2} \varphi \rightarrow \int_{\tau} div(\vec{B})\, d\tau= \int_{\tau} \psi \nabla^{2} \varphi \, d\tau = \int_{\sigma} \psi \nabla\varphi \,\cdot d\vec{\sigma}[/itex]

And there is where I am stuck. These look like they're supposed to, but I am not sure if I'm allowed to subtract them to get Green's Theorem or if I am supposed to do something else.
 
Physics news on Phys.org
  • #2
B3NR4Y said:

Homework Statement


Prove Green's theorem
[tex]
\int_{\tau} (\varphi \nabla^{2} \psi -\psi\nabla^{2}\varphi)d\tau = \int_{\sigma}(\varphi\nabla\psi
-\psi\nabla\varphi)\cdot d\vec{\sigma}[/tex]

Homework Equations


[tex] div (\vec{V})=\lim_{\Delta\tau\rightarrow 0} \frac{1}{\Delta\tau} \int_{\sigma} \vec{V} \cdot d\vec{\sigma} [/tex]
is the divergence, and Gauss's divergence theorem says
[tex]\int_{\tau} div(\vec{V}) d\tau=\int_{\sigma} V \cdot d\vec{\sigma} [/tex]
[tex] div(\vec{V})=\nabla \cdot \vec{V} [/tex]

The Attempt at a Solution


The first thing I'll do is apply Gauss's Divergence theorem to the vectors [itex] \vec{A} = \varphi\nabla\psi [/itex] and [itex]B=\psi\nabla\varphi[/itex]
Applied to A:
[itex]\nabla \cdot \vec{A}=\nabla \cdot \varphi\nabla\psi =\varphi \nabla^{2} \psi \rightarrow \int_{\tau} div(\vec{A}) d\tau= \int_{\tau} \varphi \nabla^{2} \psi \, d\tau = \int_{\sigma} \varphi \nabla\psi \,\cdot d\vec{\sigma} [/itex]

Applied to B
[itex]\nabla \cdot \vec{B}=\nabla \cdot \psi\nabla\varphi =\psi \nabla^{2} \varphi \rightarrow \int_{\tau} div(\vec{B})\, d\tau= \int_{\tau} \psi \nabla^{2} \varphi \, d\tau = \int_{\sigma} \psi \nabla\varphi \,\cdot d\vec{\sigma}[/itex]

And there is where I am stuck. These look like they're supposed to, but I am not sure if I'm allowed to subtract them to get Green's Theorem or if I am supposed to do something else.

Why do you claim that ##\nabla \cdot (\varphi \nabla \psi) = \psi \nabla^2 \varphi##? Have you proved it?
 
  • #3
Ray Vickson said:
Why do you claim that ##\nabla \cdot (\varphi \nabla \psi) = \psi \nabla^2 \varphi##? Have you proved it?
[tex]
\begin{align*}
\nabla \cdot \psi \nabla \varphi =\\
\nabla \cdot \psi <\partial_1 \varphi, \partial_2 \varphi, \partial_3 \varphi> =\\
\nabla \cdot <\psi \partial_1 \varphi,\psi \partial_2 \varphi, \psi\partial_3 \varphi> =\\ \psi\partial_{1}^{2}\varphi + \psi\partial_{2}^{2}\varphi + \psi \partial_{3}^{2}\varphi=\\
\psi (\partial_{1}^{2}\varphi + \partial_{2}^{2}\varphi + \partial_{3}^{2}\varphi)=\\
\psi\nabla^{2}\varphi
\end{align*}
[/tex]

My logic may be wrong, but here's what I had written. I also "proved" the dot product is distributive, so I could use that for this problem.

[tex]
\begin{align*} (\vec{A}-\vec{B})\cdot \vec{C}=\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} \rightarrow \\ \vec{A}-\vec{B}=a_{i}-b_{i} \rightarrow https://www.physicsforums.com/file://\\(\vec{A}-\vec{B})\cdot \vec{C}= (a_{i}-b_{i})c_{i} \, ; \, \, \\\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} = a_{i}c_{i}-b_{i}c_{i} = (a_{i}-b_{i})c_{i} = (\vec{A}-\vec{B})\cdot \vec{C}
\end{align*}
[/tex]

Therefore I can use this to subtract the two integrals I got and boom, green's theorem?
 
Last edited by a moderator:
  • #4
B3NR4Y said:
[tex]
\begin{align*}
\nabla \cdot \psi \nabla \varphi =\\
\nabla \cdot \psi <\partial_1 \varphi, \partial_2 \varphi, \partial_3 \varphi> =\\
\nabla \cdot <\psi \partial_1 \varphi,\psi \partial_2 \varphi, \psi\partial_3 \varphi> =\\ \psi\partial_{1}^{2}\varphi + \psi\partial_{2}^{2}\varphi + \psi \partial_{3}^{2}\varphi=\\
\psi (\partial_{1}^{2}\varphi + \partial_{2}^{2}\varphi + \partial_{3}^{2}\varphi)=\\
\psi\nabla^{2}\varphi
\end{align*}
[/tex]

My logic may be wrong, but here's what I had written.

Are you assuming ##\psi## is a constant? If not don't you have to differentiate it too? Use the product rule.
 
  • #5
B3NR4Y said:
[tex]
\begin{align*}
\nabla \cdot \psi \nabla \varphi =\\
\nabla \cdot \psi <\partial_1 \varphi, \partial_2 \varphi, \partial_3 \varphi> =\\
\nabla \cdot <\psi \partial_1 \varphi,\psi \partial_2 \varphi, \psi\partial_3 \varphi> =\\ \psi\partial_{1}^{2}\varphi + \psi\partial_{2}^{2}\varphi + \psi \partial_{3}^{2}\varphi=\\
\psi (\partial_{1}^{2}\varphi + \partial_{2}^{2}\varphi + \partial_{3}^{2}\varphi)=\\
\psi\nabla^{2}\varphi
\end{align*}
[/tex]

My logic may be wrong, but here's what I had written. I also "proved" the dot product is distributive, so I could use that for this problem.

[tex]
\begin{align*} (\vec{A}-\vec{B})\cdot \vec{C}=\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} \rightarrow \\ \vec{A}-\vec{B}=a_{i}-b_{i} \rightarrow https://www.physicsforums.com/file://\\(\vec{A}-\vec{B})\cdot \vec{C}= (a_{i}-b_{i})c_{i} \, ; \, \, \\\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} = a_{i}c_{i}-b_{i}c_{i} = (a_{i}-b_{i})c_{i} = (\vec{A}-\vec{B})\cdot \vec{C}
\end{align*}
[/tex]

Therefore I can use this to subtract the two integrals I got and boom, green's theorem?

Essentially, part of what you claim is that
[tex] \frac{d}{dx} \left( f(x) \frac{dg(x)}{dx} \right) = f(x) \frac{d^2 g(x)}{dx^2} [/tex]
Do you honestly believe that?
 
Last edited by a moderator:
  • #6
Oh, I'm dumb.
[tex]
\begin{align*}
\nabla \cdot \vec{A} &= \nabla \cdot \psi \nabla\varphi\\
&=\nabla \cdot \psi <\partial_{1}\varphi \, , \, \partial_{2} \varphi \, , \, \partial_3\varphi>\\
&=\nabla \cdot <\psi\partial_{1}\varphi \, , \, \psi\partial_{2} \varphi \, , \, \psi\partial_3\varphi>\\
&=(\partial_{1}\psi \, \partial_{1}\varphi + \psi \partial_{1}^2 \varphi)+(\partial_{2}\psi \, \partial_{2}\varphi + \psi \partial_{2}^2 \varphi)+(\partial_{3}\psi \, \partial_{3}\varphi + \psi \partial_{3}^2 \varphi)\\
&=\partial_{i}\psi\partial_{i}\varphi+\psi\partial_{i}^2 \varphi \\
&=\nabla\psi \cdot \nabla \psi +\psi\nabla^2\varphi

\end{align*}
[/tex]

And for B:
[tex]
\begin{align*}
\nabla \cdot \vec{B} &= \nabla \cdot \varphi \nabla\psi\\
&=\nabla \cdot \varphi <\partial_{1}\psi \, , \, \partial_{2} \psi \, , \, \partial_3\psi>\\
&=\nabla \cdot <\varphi\partial_{1}\psi \, , \, \varphi\partial_{2} \psi \, , \, \varphi\partial_3\psi>\\
&=(\partial_{1}\varphi \, \partial_{1}\psi + \varphi \partial_{1}^2 \psi)+(\partial_{2}\psi \, \partial_{2}\psi + \varphi \partial_{2}^2 \psi)+(\partial_{3}\varphi \, \partial_{3}\psi + \varphi \partial_{3}^2 \psi)\\
&=\partial_{i}\varphi\partial_{i}\psi+\varphi\partial_{i}^2 \psi \\
&=\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi

\end{align*}
[/tex]

And therefore the integrals I had before from Gauss's Divergence Theorem are
[tex]
\begin{align*}
A\rightarrow &\int_\tau (\nabla\psi \cdot \nabla \varphi +\psi\nabla^2\varphi) \, d\tau = \int_{\sigma} \psi\nabla\varphi \cdot d \vec{\sigma} \\
B\rightarrow &\int_\tau (\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi) \, d\tau = \int_{\sigma} \varphi\nabla\psi \cdot d \vec{\sigma}

\end{align*}
[/tex]

and THEN I subtract, the dot product part at the beginning cancels and bam I have green's theorem?
 
  • #7
B3NR4Y said:
Oh, I'm dumb.
[tex]
\begin{align*}
\nabla \cdot \vec{A} &= \nabla \cdot \psi \nabla\varphi\\
&=\nabla \cdot \psi <\partial_{1}\varphi \, , \, \partial_{2} \varphi \, , \, \partial_3\varphi>\\
&=\nabla \cdot <\psi\partial_{1}\varphi \, , \, \psi\partial_{2} \varphi \, , \, \psi\partial_3\varphi>\\
&=(\partial_{1}\psi \, \partial_{1}\varphi + \psi \partial_{1}^2 \varphi)+(\partial_{2}\psi \, \partial_{2}\varphi + \psi \partial_{2}^2 \varphi)+(\partial_{3}\psi \, \partial_{3}\varphi + \psi \partial_{3}^2 \varphi)\\
&=\partial_{i}\psi\partial_{i}\varphi+\psi\partial_{i}^2 \varphi \\
&=\nabla\psi \cdot \nabla \psi +\psi\nabla^2\varphi

\end{align*}
[/tex]

And for B:
[tex]
\begin{align*}
\nabla \cdot \vec{B} &= \nabla \cdot \varphi \nabla\psi\\
&=\nabla \cdot \varphi <\partial_{1}\psi \, , \, \partial_{2} \psi \, , \, \partial_3\psi>\\
&=\nabla \cdot <\varphi\partial_{1}\psi \, , \, \varphi\partial_{2} \psi \, , \, \varphi\partial_3\psi>\\
&=(\partial_{1}\varphi \, \partial_{1}\psi + \varphi \partial_{1}^2 \psi)+(\partial_{2}\psi \, \partial_{2}\psi + \varphi \partial_{2}^2 \psi)+(\partial_{3}\varphi \, \partial_{3}\psi + \varphi \partial_{3}^2 \psi)\\
&=\partial_{i}\varphi\partial_{i}\psi+\varphi\partial_{i}^2 \psi \\
&=\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi

\end{align*}
[/tex]

And therefore the integrals I had before from Gauss's Divergence Theorem are
[tex]
\begin{align*}
A\rightarrow &\int_\tau (\nabla\psi \cdot \nabla \varphi +\psi\nabla^2\varphi) \, d\tau = \int_{\sigma} \psi\nabla\varphi \cdot d \vec{\sigma} \\
B\rightarrow &\int_\tau (\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi) \, d\tau = \int_{\sigma} \varphi\nabla\psi \cdot d \vec{\sigma}

\end{align*}
[/tex]

and THEN I subtract, the dot product part at the beginning cancels and bam I have green's theorem?

Sounds much better.
 
  • #8
Thank you both for your help, if it weren't for you guys I would have just subtracted my two original equations and gotten what looks right, but is a wrong answer. And would have been befuddled when I got a bad grade (most of the time we don\t get our assignments back despite the class only having about 13 students.)
 

1. What is the Divergence Theorem?

The Divergence Theorem, also known as Gauss's Theorem, is a fundamental theorem in vector calculus that relates the flow of a vector field through a closed surface to the divergence of the vector field within the enclosed volume.

2. How does the Divergence Theorem relate to Green's Theorem?

The Divergence Theorem is a generalization of Green's Theorem, which is a special case when the vector field is two-dimensional. Green's Theorem can be derived from the Divergence Theorem by considering a flat closed surface in the xy-plane.

3. How can the Divergence Theorem be used to prove Green's Theorem?

To prove Green's Theorem using the Divergence Theorem, we first consider a region in the xy-plane bounded by a simple closed curve. Then, we construct a three-dimensional surface by extruding the region in the z-direction. Applying the Divergence Theorem to this surface and taking the limit as the surface approaches the xy-plane, we can derive Green's Theorem.

4. What are the benefits of using the Divergence Theorem to prove Green's Theorem?

The Divergence Theorem provides a more general framework for understanding Green's Theorem and allows for its application in higher dimensions. It also provides a deeper insight into the relationship between the divergence of a vector field and its flow through a surface.

5. Can the Divergence Theorem be used to prove other theorems?

Yes, the Divergence Theorem has many applications in mathematics and physics. It can be used to prove various other theorems, such as Stokes' Theorem, the Fundamental Theorem of Calculus, and the Generalized Stokes' Theorem.

Similar threads

  • Calculus and Beyond Homework Help
Replies
9
Views
772
  • Calculus and Beyond Homework Help
Replies
6
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
772
  • Calculus and Beyond Homework Help
Replies
2
Views
874
  • Calculus and Beyond Homework Help
Replies
4
Views
819
  • Introductory Physics Homework Help
Replies
3
Views
339
  • Calculus and Beyond Homework Help
Replies
1
Views
708
  • Calculus and Beyond Homework Help
Replies
6
Views
1K
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
2K
Back
Top