What happens if two wheels turn toward each other....

In summary, the conversation discusses the potential consequences of the two front wheels of a car turning away from or towards each other while the car is in motion. The main concern is the stress on the steering rod and the possibility of increased friction and tire wear. It is also mentioned that in modern cars, the front and rear wheels are aligned differently to prevent excessive wear and pulling apart. One participant shares their understanding of the physics behind the braking effect of turning the wheels, but later admits to being wrong. Another participant corrects them, stating that according to the Newtonian model, a car with tires of 1.7 coefficient of friction can only go up to 8.33 m/s without slipping when the wheels are turned 90 degrees in
  • #1
Jibran96
2
0
Does anyone know what will happen if the two front wheels of a car turn away from each other (left goes left and right goes right) while the car is moving or if they turn inwards towards each other? Other than the stress on the steering rod, will this cause braking and if yes, how effective can this braking be considering that it is an average sedan? Will this braking be substantial?
 
Physics news on Phys.org
  • #2
If the wheels turn only slightly in (or slightly out), the effect should be increased friction and a lot of tire wear. If wheels turn into a greater degree, at some point they will cease to roll and go into sliding only. This would be a braking action, but it would be difficult to control; not a good idea.
 
  • #3
Turns out front-wheel drive cars are aligned with toe-out and rear-wheel drives with toe-in.
But not too much in modern cars, or they will be pulled apart...:rolleyes:
 
  • #4
Thank you for your replies. Dr.D, just to be clear, for instance if a car is moving forward and the front two wheels tun inwards by a slight angle (not too much), I now understand that the friction will increase and this will cause a braking effect, but will this be becasue of increased surface area (wheel to ground) or the restriction of the wheel movement?
Thanks in advance!
 
  • #5
The restriction of the wheel movement will force skidding instead of rolling, with a correspondingly higher friction coefficient.
 
  • #6
One might (or might not) get some better insight to the effect by considering the behavior of a small patch on the surface of a tire as it rotates into contact with the road and then back off. Let us assume a toe-in configuration. Toe-out will be the same, just with some signs reversed.

As the patch first rotates into contact with the road on the front side of the contact area, it is under no lateral force. As it rotates further back, the geometry of the wheel tends to force the patch away from the centerline of the vehicle. The tire is not rigid. It is made of rubber. It can flex. The patch continues to track straight back while the body of the tire above it moves outward, away from the centerline. Of course, this results in an outward force on the patch and a corresponding inward force on the body of the tire.

An inward force on a tire with toe-in has a component that retards rotation. [Squeeze together on the bottom of a pair of tires with toe-in and you'll tend to make your car move backward] Of course, in an ideal world, energy is conserved. This squeezing effect that retards rotation, effectively consuming energy, must put that energy somewhere. And it does. The rubber in the tire acts like a spring, storing potential energy in its deflection.

If we continue to follow the patch backward, it may undergo so much lateral stress that it skids across the pavement laterally, draining energy into friction. In any case, it will eventually rotate up off the pavement and snap back to its unstressed position, draining potential energy into vibration which will ultimately damp into heat.
 
  • #7
Jibran96 said:
Does anyone know what will happen if the two front wheels of a car turn away from each other (left goes left and right goes right) while the car is moving or if they turn inwards towards each other? Other than the stress on the steering rod, will this cause braking and if yes, how effective can this braking be considering that it is an average sedan? Will this braking be substantial?
According to what I know so far, if the 2 front tires are suddenly turned 90 degrees, if the tires have a uS of 1.7 and the car is not accelerating, and has an even weight distribution, the car will stop instantly if the car is traveling at a forwards velocity less than .85.

I could be wrong, and if I am, someone please correct me because I have been basing my car physics on this principle so far and not having much progress, and if I'm wrong about this scenario this may help my life greatly.
Turns out i was wrong and i suck. But, when I did carphysics, I did it the supposed right way, but got bad results, so ironically me being wrong with this post didn't help me much.
The correct answer is, according to Newtonian model, a car with tires of 1.7 us can go no faster than 8.33 m/s if you don't want it to slip when you turn the tires 90 in one frame of simulated time.
 
Last edited:
  • #8
quickquestion said:
According to what I know so far, if the 2 front tires are suddenly turned 90 degrees, if the tires have a uS of 1.7 and the car is not accelerating, and has an even weight distribution, the car will stop instantly if the car is traveling at a forwards velocity less than .85.
In what units? Clearly this must be wrong since velocity is not unitless.
 
  • #9
jbriggs444 said:
In what units? Clearly this must be wrong since velocity is not unitless.
I wouldn't say it "must be wrong", just could be more right. Unless, it is wrong for some reason besides that one.
Let's see, the carmass is KG, and the grav accel is 9.8m/s, so if we plug it in, our max Fforce from the front tires is carmass*gravaccel/2*1.7.
And force=mass*acceleration, so (in a simulation of one frame duration) the force needed to stop the car instantly would be force=carmass*carvelocity. Thus carmass*velocity cannot exceed carmass*gravaccel/2*1.7.
And we can cancel out carmass since it is on both sides of the equation. so velocity cannot exceed gravaccel/2. Thus our units are m/s. So our car cannot go faster than gravaccel/2*1.7. (8.33 meters per second.)
And the type of units are kg and meters per second.
So yeah, the equation was absolutely wrong, but for a different reason than was listed (the actual reason was because I forgot to put in gravaccel).
And no, me being wrong on this will not help me with my carphysics, because I used gravaccel in my car physics, just forgot to put it in the first post.
 
  • #10
quickquestion said:
And force=mass*acceleration, so (in a simulation of one frame duration) the force needed to stop the car instantly would be force=carmass*carvelocity.
The force needed to stop the car instantly would be infinite.

Force is equal to the rate of change of momentum. ##F=\frac{dp}{dt}##

If you have a non-zero change of momentum and a zero interval, that quotient is infinite (actually it's division by zero).
 
  • #11
jbriggs444 said:
The force needed to stop the car instantly would be infinite.

Force is equal to the rate of change of momentum. ##F=\frac{dp}{dt}##

If you have a non-zero change of momentum and a zero interval, that quotient is infinite (actually it's division by zero).
true, but my latest post says this.
(in a simulation of one frame duration)
 
  • #12
quickquestion said:
true, but my latest post says this.
(in a simulation of one frame duration)
Could you slow down and explain what you are talking about? None of this makes any sense.
 
  • #13
jbriggs444 said:
Could you slow down and explain what you are talking about? None of this makes any sense.
Sometimes it feels that way to me as well.

Basically, if you are in a car simulation (and you want to follow the rules of the Newtonian model), and you turn the steering wheel 90 degrees in one frame (the physics engine updates at the end of each frame) if you car has a velocity (not accel, but a velocity) higher than 8.33 meters per second, the tires will not make the car stop instantly, but instead slip.
 
  • #14
quickquestion said:
Sometimes it feels that way to me as well.

Basically, if you are in a car simulation (and you want to follow the rules of the Newtonian model), and you turn the steering wheel 90 degrees in one frame (the physics engine updates at the end of each frame) if you car has a velocity (not accel, but a velocity) higher than 8.33 meters per second, the tires will not make the car stop instantly, but instead slip.
Who said that the model updates one frame per second?
 
  • #15
Isn't this a vector problem - the portion of the direction of travel relative to the rolling direction and the portion normal to it, let's call this the Scrub. Depending on the tire composition and the surface you will have different results regarding tire and system distortion and finally breakaway and skidding/scrub. -- Also - as a real world question for the group, is a skidding tire really sliding friction? I have always considered more of a tearing, material issue. (i.e. the surface area does matter).
 
  • #16
jbriggs444 said:
Who said that the model updates one frame per second?
Not me, my simulations run at 30 or 60 frames per second.

8.33 meters per second is based on the Pixels To Meters conversion in the physics engine.
 
  • #17
BvU said:
rear-wheel drives with toe-in
This is combined with caster, resulting in a slight outwards steering torque on each front tire. If the car starts to wander into a left or right turn, then the "outer" front tire will experience more outwards steering torque than the "inner" tire, causing the steering to self correct (although after a correction, the car's direction has slightly changed).

For rear wheel drive, the rear tires also have a bit of toe in. If a car starts to wander and turn, the "outside" tire gets additional downforce and would tend to steer the rear end inwards to correct the turn, due to interaction between slip angle and downforce. For front wheel drive, with a bit of toe out, the "outside" tire would tend to steer the front end outwards to correct the turn.
 
Last edited:

1. What happens if two wheels turn toward each other at the same time?

When two wheels turn towards each other at the same time, they will collide and create an impact force between them. The direction and magnitude of this impact force will depend on the speed and angle at which the wheels are turning.

2. Will the wheels get stuck or locked together if they turn towards each other?

If the wheels are turning at high speeds and are angled towards each other, there is a possibility that they may get stuck or locked together. This can happen if the force of impact is strong enough to cause the spokes or other parts of the wheels to get entangled.

3. Can the wheels turn towards each other without colliding?

Yes, it is possible for the wheels to turn towards each other without colliding. This can happen if the wheels are turning at lower speeds and are not angled towards each other too sharply. In this case, the wheels may gently touch or graze each other, but will not collide with a significant force.

4. What factors affect the outcome when two wheels turn towards each other?

The outcome of two wheels turning towards each other will be affected by several factors, including the speed at which they are turning, the angle at which they are turning, the size and weight of the wheels, and the condition of the wheels (e.g. if they are properly aligned and inflated).

5. Is there a way to control the outcome when two wheels turn towards each other?

As a scientist, I cannot provide advice on controlling the outcome of two wheels turning towards each other. However, as a general rule, it is important to always operate vehicles or machines with caution and follow proper safety measures to minimize the risk of collisions or accidents.

Similar threads

Replies
73
Views
6K
Replies
15
Views
2K
  • Classical Physics
2
Replies
49
Views
2K
Replies
6
Views
926
  • Introductory Physics Homework Help
Replies
18
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
888
  • DIY Projects
Replies
8
Views
259
  • Mechanics
Replies
30
Views
9K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • General Discussion
Replies
11
Views
930
Back
Top