What is the issue with the polar acceleration problem?

In summary: F_r=\frac{-dV}{dr}=0\end{align*}$$That is, there is no force acting on the particle in the ##\hat{r}## direction. This is consistent with the statement that the transverse acceleration is zero.The potential energy is given by$$V(r,\theta)=-\frac{k}{r}+\frac{\alpha}{r^2}$$where ##k## and ##\alpha## are positive constants. Using the equation for the potential energy, we can find the force acting on the particle in the ##\hat{\theta}## direction,$$F_{\theta}=\frac{\partial
  • #1
Kaguro
221
57
Homework Statement
A particle moves on a plane with rθ = constant. It's transverse acceleration is zero. Force acting on it is related to r as:
(a)1/r
(b)1/r^2
(c) 1/r^3
(d) 1/r^4
Relevant Equations
## \dot {\hat {r} }=\dot θ \hat {\theta}##

## \dot {\hat \theta }=-\dot {\theta} \hat r##
##\vec r=r \hat r##
##\vec v=\dot r \hat r + r \dot \theta \hat \theta##
##\vec a = (\ddot r - r \dot \theta^2)\hat r + (2 \dot r \dot \theta + r \ddot \theta)\hat \theta##
Given that,
##2 \dot r \dot \theta + r \ddot \theta =0##

Also,
##r \theta=constant##
##\Rightarrow \dot r \theta + r \dot \theta=0##
##\Rightarrow \dot r = -\frac{r \dot \theta} {\theta}##
##\Rightarrow \frac{-2r \dot \theta^2}{\theta} + r \ddot \theta=0##
##\Rightarrow \frac{2 \dot \theta^2}{\theta} = \ddot \theta##
##\Rightarrow 2 \dot \theta^2=\theta \ddot \theta##
##\Rightarrow \vec a=(\ddot r-r \dot\theta^2) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{r \theta\ddot \theta}{2}) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{(const.)\ddot \theta}{2}) \hat r##

Which is independent of r.
What is wrong with my work?
 
Physics news on Phys.org
  • #2
Kaguro said:
Homework Statement:: A particle moves on a plane with rθ = constant. It's transverse acceleration is zero. Force acting on it is related to r as:
(a)1/r
(b)1/r^2
(c) 1/r^3
(d) 1/r^4
Relevant Equations:: ## \dot {\hat {r} }=\dot θ \hat {\theta}##

## \dot {\hat \theta }=-\dot {\theta} \hat r##

##\vec r=r \hat r##
##\vec v=\dot r \hat r + r \dot \theta \hat \theta##
##\vec a = (\ddot r - r \dot \theta^2)\hat r + (2 \dot r \dot \theta + r \ddot \theta)\hat \theta##
Given that,
##2 \dot r \dot \theta + r \ddot \theta =0##

Also,
##r \theta=constant##
##\Rightarrow \dot r \theta + r \dot \theta=0##
##\Rightarrow \dot r = -\frac{r \dot \theta} {\theta}##
##\Rightarrow \frac{-2r \dot \theta^2}{\theta} + r \ddot \theta=0##
##\Rightarrow \frac{2 \dot \theta^2}{\theta} = \ddot \theta##
##\Rightarrow 2 \dot \theta^2=\theta \ddot \theta##
##\Rightarrow \vec a=(\ddot r-r \dot\theta^2) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{r \theta\ddot \theta}{2}) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{(const.)\ddot \theta}{2}) \hat r##

Which is independent of r.
What is wrong with my work?

Why is this independent of ##r## when you haven't solved for ##\ddot r## or ##\ddot \theta##?
 
  • #3
Wow! It's so difficult to know when to stop manipulating the equations...
##\vec a=(\ddot r - r \theta \ddot \theta/2) \hat r##
Now, ##r \theta=## const.
##r\dot \theta + \theta \dot r=0##
##r\ddot \theta +2\dot r \dot \theta + \theta \ddot r=0##
So, ##\ddot r = \frac{-2 \dot r \dot \theta - r \ddot \theta}{\theta}##

Also, since tangential part of acceleration is zero,
##\ddot \theta=\frac{-2\dot r \dot \theta}{r}##
So,
##\ddot r=\frac{-2\dot r \dot \theta+ 2 \dot r \dot \theta}{\theta}=0##
##\vec a=-const \ddot \theta \hat r = const \frac{ \dot r \dot \theta \hat r} {r}##

So, (a) is correct:biggrin:

Writing Latex is hard...
Thanks for help!
 
  • #4
Kaguro said:
Wow! It's so difficult to know when to stop manipulating the equations...
##\vec a=(\ddot r - r \theta \ddot \theta/2) \hat r##
Now, ##r \theta=## const.
##r\dot \theta + \theta \dot r=0##
##r\ddot \theta +2\dot r \dot \theta + \theta \ddot r=0##
So, ##\ddot r = \frac{-2 \dot r \dot \theta - r \ddot \theta}{\theta}##

Also, since tangential part of acceleration is zero,
##\ddot \theta=\frac{-2\dot r \dot \theta}{r}##
So,
##\ddot r=\frac{-2\dot r \dot \theta+ 2 \dot r \dot \theta}{\theta}=0##
##\vec a=-const \ddot \theta \hat r = const \frac{ \dot r \dot \theta \hat r} {r}##

So, (a) is correct:biggrin:

Writing Latex is hard...
Thanks for help!
You still have ##\dot \theta## in that answer!
 
  • #5
PeroK said:
You still have ##\dot \theta## in that answer!
Oh no...

So I used ##\dot \theta r +\theta \dot r=0##
To get
##\vec a = \frac{-\dot r^2 \theta}{r^2}\hat r##
And so
##\vec a = \frac{-\dot r^2 const}{r^3} \hat r##

So option C is correct?

And also, why leave answer in ##\dot r##?
I could convert it in terms of ##\dot \theta## and have only r in numerator.

How do you know which one to choose?
 
  • #6
Kaguro said:
Oh no...

So I used ##\dot \theta r +\theta \dot r=0##
To get
##\vec a = \frac{-\dot r^2 \theta}{r^2}\hat r##
And so
##\vec a = \frac{-\dot r^2 const}{r^3} \hat r##

So option C is correct?

And also, why leave answer in ##\dot r##?
I could convert it in terms of ##\dot \theta## and have only r in numerator.

How do you know which one to choose?
You already showed that ##\ddot r = 0##, so ##\dot r## is constant.
 
  • Like
Likes Kaguro
  • #7
😶
Wow...
You're great!:bow:
 
  • Like
Likes PeroK
  • #8
I take issue with the selection of answers provided in the problem statement. Allow me to offer my analysis of this problem using Lagrangian dynamics. The Lagrangian for the system is$$
\begin{align*}
\mathcal{L}=\frac{1}{2}mv^2-V(r,\theta)\\
v^2=\dot{x}^2+\dot{y}^2
\end{align*}$$
where m is the mass of the particle, ##v## is the velocity and ##V(r,\theta)## is the potential energy. In our two dimensional Cartesian coordinate system,$$
\begin{align*}
x=r\cos(\theta)\\
y=r\sin(\theta)\\
\dot{x}=\dot{r}\cos(\theta)-r\dot{\theta}sin(\theta)\\
\dot{y}=\dot{r}\sin(\theta)+r\dot{\theta}sin(\theta)\\
v^2=\dot{r}^2+r^2\dot{\theta}^2
\end{align*}$$
and the Lagrangian becomes,$$
\mathcal{L}=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r,\theta)
$$with the prescription,$$
\begin{align*}
\frac{d}{dt}\frac{\partial{\mathcal{L}}}{\partial{\dot{r}}}=\frac{\partial{\mathcal{L}}}{\partial{r}}\\
\frac{d}{dt}\frac{\partial{\mathcal{L}}}{\partial{\dot{\theta}}}=\frac{\partial{\mathcal{L}}}{\partial{\theta}}
\end{align*}$$
we get the following equations,$$
\begin{align*}

m(\ddot{r}-r\dot{\theta}^2)=-\frac{\partial{V(r,\theta)}}{\partial{r}}=F_r\\
mr^2\ddot{\theta}^2=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0
\end{align*}$$From the problem statement,$$
\theta=\frac{c}{r}$$ where ##c## is a constant and thus,$$
\begin{align*}
\dot{\theta}=\frac{-c\dot{r}}{r^2}\\
\ddot{\theta}=2c\frac{\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}=0\\
\ddot{r}=2\frac{\dot{r}^2}{r}=\dot{r}\frac{d\dot{r}}{dr}\\
\int_{\dot{r}_0}^{\dot{r}_f}\frac{d\dot{r}}{\dot{r}}=2\int_{r_0}^{r_f}\frac{dr}{r}
\end{align*}$$and thus,
$$
\begin{align*}
\dot{r}=br\\
b=2\frac{\dot{r}_0}{r_0}\\
\ddot{r}=b\dot{r}=b^2r
\end{align*}$$
Plugging the result into the formula for ##F_r## we get,$$
F_r=mb^2r(1-\frac{2c^2}{r^2})$$
 
Last edited:
  • Skeptical
Likes PeroK
  • #9
Fred Wright said:
we get the following equations,$$
\begin{align*}

m(\ddot{r}-r\dot{\theta}^2)=-\frac{\partial{V(r,\theta)}}{\partial{r}}=F_r\\
mr^2\ddot{\theta}^2=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0
\end{align*}$$

You should check that second equation. It's missing the term ##2m \dot r \dot \theta##.
 
  • #10
PeroK said:
You should check that second equation. It's missing the term ##2m \dot r \dot \theta##.
Your right PeroK! It should read,$$
mr^2\ddot{\theta}+ 2mr\dot{r}\dot{\theta}=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0$$which gives,$$
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}$$We also have,$$
\begin {align*}
\theta=\frac{c}{r}\\
\dot{\theta}=\frac{-c\dot{r}}{r^2}\\
\ddot{\theta}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}
\end {align*}$$and thus$$
\begin {align*}
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}=-2\frac{\dot{r}}{r}\frac{c\dot{r}}{r^2}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}\\
4\frac{c\dot{r}^2}{r^3}=\frac{c\ddot{r}}{r^2}\\
\frac{4}{r}=\frac{\ddot{r}}{\dot{r}^2}\\
\ddot{r}=\dot{r}\frac{d\dot{r}}{dr}\\
4\int_{r_0}^{r_f}\frac{dr}{r}=\int_{\dot{r}_0}^{\dot{r}_f}\frac{d\dot{r}}{\dot{r}}\\
\dot{r}= br^4\\
b=\frac{r_0^4}{\dot{r}_0}
\end {align*}$$
Plugging into ##F_r##$$
F_r=m(\ddot{r}-r\dot{\theta}^2)=4mb^2r^7(1-\frac{c^2}{r^2})$$
I think I got it right this time...whatever...I found this problem interesting.
 
  • Skeptical
Likes PeroK
  • #11
That looks worse!
 
  • #12
Fred Wright said:
Your right PeroK! It should read,$$
mr^2\ddot{\theta}+ 2mr\dot{r}\dot{\theta}=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0$$which gives,$$
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}$$We also have,$$
\begin {align*}
\theta=\frac{c}{r}\\
\dot{\theta}=\frac{-c\dot{r}}{r^2}\\
\ddot{\theta}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}
\end {align*}$$and thus$$
\begin {align*}
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}=-2\frac{\dot{r}}{r}\frac{c\dot{r}}{r^2}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}
\end{align*}
$$

You have made a sign error: from [tex]
r^2 \ddot \theta + 2r \dot r \dot \theta = 0[/tex] you obtain [tex]
\ddot \theta = - 2\frac{ \dot r \dot \theta}{r}.[/tex] Substituting [itex]\dot \theta = -C\dot r/ r^2[/itex] you should have obtained [tex]
\ddot \theta = \frac{2C \dot r^2}{r^3}.[/tex] You, however, have an additional minus sign here.

With the correct sign, comparing with [itex]\ddot \theta = \frac{d}{dt}(-C\dot r /r^2)[/itex] you should conclude [tex]
\frac{2C\dot r ^2}{r^3} = -\frac{C\ddot r}{r^2} + \frac{2C \dot r ^2}{r^3}[/tex] and thus [tex]
0 = \frac{C\ddot r}{r^2}.[/tex]

$$\begin{align*}
4\frac{c\dot{r}^2}{r^3}=\frac{c\ddot{r}}{r^2}\\
\frac{4}{r}=\frac{\ddot{r}}{\dot{r}^2}\\
\ddot{r}=\dot{r}\frac{d\dot{r}}{dr}\\
4\int_{r_0}^{r_f}\frac{dr}{r}=\int_{\dot{r}_0}^{\dot{r}_f}\frac{d\dot{r}}{\dot{r}}\\
\dot{r}= br^4\\
b=\frac{r_0^4}{\dot{r}_0}
\end {align*}$$
Plugging into ##F_r##$$
F_r=m(\ddot{r}-r\dot{\theta}^2)=4mb^2r^7(1-\frac{c^2}{r^2})$$
I think I got it right this time...whatever...I found this problem interesting.
 
  • #13
Kaguro said:
since tangential part of acceleration is zero,
Be careful with the terminology.
You are given that the transverse component is zero, i.e. the ##\hat\theta## component, also known as the circumferential component. It is normal to the radial component.
The tangential component is in the direction of the velocity and is normal to the centripetal component.
 

What is the polar acceleration problem?

The polar acceleration problem, also known as the polar motion problem, refers to the observed changes in the Earth's axis of rotation. This can be caused by a variety of factors, such as changes in the Earth's mass distribution or shifts in the Earth's crust.

What causes polar acceleration?

There are several factors that can contribute to polar acceleration, including changes in the Earth's mass distribution due to melting ice caps or tectonic plate movement. Additionally, variations in the Earth's rotation rate and the gravitational pull of other celestial bodies can also play a role.

How is polar acceleration measured?

Polar acceleration is typically measured using a technique called Very Long Baseline Interferometry (VLBI). This involves using radio telescopes to track the positions of distant objects in the sky and comparing them to a reference point on Earth's surface.

What are the potential impacts of polar acceleration?

Polar acceleration can have a range of impacts on the Earth, including changes in sea level and weather patterns, as well as disruptions to satellite and GPS systems. It can also affect the length of a day and the orientation of the Earth's axis, which can have consequences for agriculture and navigation.

Can polar acceleration be predicted or controlled?

While scientists can track and measure polar acceleration, it is difficult to predict or control. However, ongoing research and monitoring can help us better understand the causes and potential impacts of polar acceleration, allowing us to better prepare for and adapt to any changes that may occur.

Similar threads

  • Calculus and Beyond Homework Help
Replies
6
Views
539
  • Calculus and Beyond Homework Help
Replies
9
Views
169
  • Calculus and Beyond Homework Help
Replies
3
Views
565
Replies
8
Views
240
  • Calculus and Beyond Homework Help
Replies
9
Views
772
  • Calculus and Beyond Homework Help
Replies
7
Views
7K
Replies
14
Views
1K
  • Advanced Physics Homework Help
Replies
11
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
1K
Replies
33
Views
3K
Back
Top