I What is the spin-boson model for decoherence in a Penning trap?

  • I
  • Thread starter Thread starter Malamala
  • Start date Start date
  • Tags Tags
    Decoherence
Malamala
Messages
345
Reaction score
28
Hello! I read a bit about decoherence lately (I made a post few weeks ago about it and got some reading suggestions) and I would like to try to apply it to a practical situation I need, which is a Penning trap with a single ion at the center. For now I would like to account just for the decoherence due to the black body radiation and as far as I understand the spin-boson model would be the right one for this (at least to start with). However that involves certain coupling constant which I am not sure how to approximate for my given setup. Can someone point me towards some reading about this or previous calculations made for a (cylindrical) Penning trap such that I can start from there? Thank you!
 
  • Like
Likes Twigg, gentzen and asd789
Physics news on Phys.org
Sorry for the slow and short reply.

I'm not 100% sure how to calculate the decoherence rate, but I can tell you that the blackbody radiation shifts the energy difference ##E_e - E_g## by ##\delta E = (\alpha_e - \alpha_g) \| \vec{E}_{BBR} \|^2## where ##\alpha_{e,g}## is the polarizability of the ground (excited) state (at a particular frequency). This is for Stark shifted qubit states. There is an analogous expression for Zeeman states. You can get ##\| \vec{E}_{BBR} \|^2## from Planck's law for blackbody radiation (spectral irradiance) and your trap's geometry.

My gut feeling is that you can get the decoherence rate by taking the variance of this blackbody frequency shift (##\gamma = \sigma_\nu##, same idea as when you calculate the coherence time of a laser from bandwidth). Thus, the decoherence rate would bee $$\gamma = |\alpha_e - \alpha_g| \sqrt{\langle \| \vec{E}_{BBR} \|^4 \rangle - \langle \| \vec{E}_{BBR} \|^2 \rangle^2}$$ The quadratic term can be calculated from the blackbody partition function by looking at the expectation value of energy squared (just as you do when you calculate energy fluctuations in an ideal gas from the heat capacity).

Does that make sense?
 
Also, I'm not sure which "spin-boson model" you're referring to. Is there a paper you're reading that you can link us to?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...

Similar threads

Replies
0
Views
1K
Replies
16
Views
2K
Replies
1
Views
1K
Replies
13
Views
2K
Replies
4
Views
2K
Replies
40
Views
8K
Back
Top