Recent content by Christoffelsymbol100
-
C
Finding the potential inside a semiconductor
Homework Statement My question is more about understanding the task itself, not about calculation. I am supposed to use the poisson equation, to derive the potential inside a semiconductor for a barrier with potential height ##\phi_B## and a donator doping with ##N1 > N2##. Then I should use...- Christoffelsymbol100
- Thread
- Electrostatic Potential Quantum Semiconductor Solid state physics
- Replies: 1
- Forum: Advanced Physics Homework Help
-
C
Collision Angle for Two Particles with Constant Velocity and Acceleration
But it has acceleration in the x- and y- direction namely a_x = sin(\theta)*0,4 and a_x = cos(\theta)*0,4 . Particle B starts with zero velocity and starts the origin so \vec{x_0} = 0 , \vec{v_0} = 0- Christoffelsymbol100
- Post #4
- Forum: Introductory Physics Homework Help
-
C
Collision Angle for Two Particles with Constant Velocity and Acceleration
Homework Statement I am currently solving a problem and I am not sure if it is correct. There are two particles A and B. A has a constant velocity with |\vec{v}| = 3 and starts from y = 30 B has constant acceleration with |\vec{a}| = 0,4 The goal is to find the angle between the...- Christoffelsymbol100
- Thread
- Collision Mechanics Particles
- Replies: 3
- Forum: Introductory Physics Homework Help
-
C
Graduate What happens mathematically when a wave function collapses
In Shankars "Principle of Quantum Mechanics" in Chapter 4, page 122, he explains what the "Collapse of the State Vector" means. I get that upon measurement, the wave function can be written as a linear combination of the eigenvectors belonging to a operator which corresponds to the...- Christoffelsymbol100
- Thread
- Collapse Function Quantum mechanics Wave Wave function
- Replies: 20
- Forum: Quantum Physics
-
C
Question regarding an integral
Ah I see, thanks very much both of you!- Christoffelsymbol100
- Post #8
- Forum: Calculus and Beyond Homework Help
-
C
Question regarding an integral
I did perform that step as I wrote in my post and I get the same equation, though my derivative might be wrong. Let's differentiate the solution from the book with respect to x: \frac{d}{dx}\left(\frac{l^2a^2x^2}{12x^2+l^2}\right) = l^2a^2 \frac{d}{dx}\left(\frac{x^2}{12x^2+l^2}\right) Using...- Christoffelsymbol100
- Post #5
- Forum: Calculus and Beyond Homework Help
-
C
Question regarding an integral
It means :\frac{d\dot{x}^2}{dx} = \frac{d}{dx}\left(\frac{dx}{dt}\right)^2 For the result from the book there where no steps shown. For my result: \frac{d\dot{x}^2}{dx} = \frac{2l^4a^2x}{(12x^2+l^2)^2} \Longrightarrow \int d\dot{x}^2 =2 l^4a^2\int \frac{x}{(12x^2+l^2)^2} dx Apply...- Christoffelsymbol100
- Post #3
- Forum: Calculus and Beyond Homework Help
-
C
Question regarding an integral
Homework Statement I've got an equation which I need to integrate. However, integrating it and checking with the solutions, I get two different results. I get the same result as using wolfram alpha, but a different result from the book. If I differentiate both results, I get back to the orginal...- Christoffelsymbol100
- Thread
- Integral
- Replies: 7
- Forum: Calculus and Beyond Homework Help
-
C
Finding the geodesic equation from a given line element
\begin{equation}p_u = \frac{\partial L}{\partial \dot{u}} = m\dot{u}f\end{equation} \begin{equation}\frac{\partial L}{\partial u} = 0\end{equation} \begin{equation}\frac{dp_u}{dt} = \frac{d}{dt}(m\dot{u}f) = m\ddot{u}f + m\dot{u}\frac{\partial f}{\partial x}\dot{x} = 0\end{equation} Dividing by...- Christoffelsymbol100
- Post #3
- Forum: Advanced Physics Homework Help
-
C
Finding the geodesic equation from a given line element
Homework Statement We've got a line element ds^2 = f(x) du^2 + dx^2 From that we should find the geodesic equation Homework Equations Line Element: ds^2 = dq^j g_{jk} dq^k Geodesic Equation: \ddot{q}^j = -\Gamma_{km}^j \dot{q}^k \dot{q}^m Christoffel Symbol: \Gamma_{km}^j = \frac{g^{jl}}{2}...- Christoffelsymbol100
- Thread
- Element Geodesic Geodesic equation Lagrange Line Line element Metric Tensor
- Replies: 2
- Forum: Advanced Physics Homework Help
-
C
Lagrangian mechanics: Bar connected to a spring
Thank you very much! I'll try to solve it now- Christoffelsymbol100
- Post #3
- Forum: Advanced Physics Homework Help
-
C
Lagrangian mechanics: Bar connected to a spring
Homework Statement Mass 1 can slide on a vertical rod under the influence of a constant gravitational force and and is connected to the rod via a spring with the spring konstant k and rest length 0. A mass 2 is connected to mass 1 via a rod of length L (forms a 90 degree angel with the first...- Christoffelsymbol100
- Thread
- Euler-lagrange Lagrangian Lagrangian mechanics Mechanics Spring
- Replies: 2
- Forum: Advanced Physics Homework Help
-
C
Discrete Lagrangian Homework: Minimize S, Find EoM's & Discrete Trajectory
Hey thank you very much! Now the discrete equation looks like Newtons 2nd law just as was asked :')- Christoffelsymbol100
- Post #5
- Forum: Advanced Physics Homework Help
-
C
Discrete Lagrangian Homework: Minimize S, Find EoM's & Discrete Trajectory
Wouldn't it reduce to \frac{\partial U(r_{k})}{\partial r_k} j = r_{k+1} because only for j=k+1 the kroenecker delta would give me a 1? And when you would have \frac{\partial U(r_{k+1-1})}{\partial r_k} = \frac{\partial U(r_{k})}{\partial r_k} and then I would have two \frac{\partial...- Christoffelsymbol100
- Post #3
- Forum: Advanced Physics Homework Help
-
C
Discrete Lagrangian Homework: Minimize S, Find EoM's & Discrete Trajectory
Homework Statement In this exercise, we are given a discrete Lagrangian which looks like this: http://imgur.com/TL0P61r. We have to minimize the discrete S with fixed point r_i and r_f and find the the discrete equations of motions. In the second part we should derive a discrete trajectory for...- Christoffelsymbol100
- Thread
- Discrete Lagrange Lagrangian Mechanics Numeric
- Replies: 4
- Forum: Advanced Physics Homework Help