Yes. The integral is actually:\int \Psi^{*} L_{z} \Psi \,d^{3}r = -i \hbar \int \Psi^{*} \frac{\partial \Psi}{\partial \phi} \,d^{3}r
And,
Y_{l,m}^{*} = (-1)^{m}Y_{l,-m}
<L_{z}> = P_{m_{l} = 1} (m_{l} \hbar) + P_{m_{l} = -1} (m_{l} \hbar)
<L_{z}> = \frac{2}{3}(1 \hbar) + \frac{1}{3} (0...