Recent content by Hashiramasenju

  1. H

    Integration of trigonometric function

    Homework Statement I have included the LaTex version of the problem. \int \frac{sin^2 x}{1+cos^2 x} dx Homework Equations Simplifying fraction Partial fractions The Attempt at a Solution I have uploaded my attempt at the solution.
  2. H

    How Is Energy Dissipated in a Capacitor and Resistor Circuit?

    But shouldn't the voltage across a parallel circuit be the same regardless of the resistance?
  3. H

    How Is Energy Dissipated in a Capacitor and Resistor Circuit?

    S1 basically charges the capacitor but S2 helps discharge the capacitor and time constant =RC=R*10*10^-3 I have a doubt that the pd across the capacitor is not 24v. Otherwise the energy dissipated in the resistor is not equal to the energy the capacitor posseses
  4. H

    How Is Energy Dissipated in a Capacitor and Resistor Circuit?

    Homework Statement https://isaacphysics.org/api/images/content/questions/physics/circuits/capacitors/level4/figures/Circuits_potentiometer_capacitor_otp_2.svg PQ is a slide-wire of uniform resistance, and J is a moveable contact at some point along it, such that the length from P to J is a...
  5. H

    Minimum Angle for Increasing Distance of Projectile?

    Homework Statement whats the minimum angles to the vertical(theta) for a projectile(ball) to be realeased with speed v such that at any point of time the distance to the ball is increasing. Homework Equations Sh=vtsin(theta) Sv=vtcos(theta)-0.5gt^2 The Attempt at a Solution so i used...
  6. H

    Calculating the Velocity and Distance of Two Colliding Planets using Gravity

    OMG ! I got the answer. Thanks alot. So for the second part i got the answer by guessing that m1/m2=d2/d1 where d1 is the distance travveled by m1 and likewise for d2 and the answer was correct but i don't know why
  7. H

    Calculating the Velocity and Distance of Two Colliding Planets using Gravity

    Thats what is confusing me so is it Gm1m2/(2r+R) -Gm1m2/(2r)=0..5m1v1^2+0.5m2v2^2
  8. H

    Calculating the Velocity and Distance of Two Colliding Planets using Gravity

    so is it Gm1m2/(2r+R)=0.5m1v1^2 where R is the distance between the surface of the two rocks
  9. H

    Calculating the Velocity and Distance of Two Colliding Planets using Gravity

    momentum is conserved so m1v1=-m2v2 But how do you calculate the potential energy? Thanks for the reply
Back
Top