ok, thanks. I had assumed that since P(B=murderer,M=murderer) had changed, P(K|B=murderer,M=murderer) would change since P(K|B=murderer,M=murderer) = P(K,B=murderer,M=Murderer)/P(B=murderer,M=murderer), and similarly for the other conditionals.
Ok, I had thought since those probabilities had changed, the P(k|B,M) probabilities would also have to change, and without ndependence I wouldn't be able to recalculate. It seems I can set P(K|B=murderer,M=murderer)=0 and reuse the others unchanged, but that still makes me a bit uncomfortable?
Hi,
I've run into a snag trying to read a textbook problem. Here is the original example, it's pretty straightforward. The problem I have is when I get to the exercise and it asks me to place a restriction on this example. This restriction seems to break the independence of two variables...
Well I understand the bolded statement. I don't know why it doesn't have anything to do with the fact that I'm dealing with a conditional probability, since it's P( T = tr | A = tr ). In my mind I'm looking for an algebraic substitution or something that I know that allows me to manipulate...
I'm just going to post a screenshot of the Example (free online textbook). I'm having a tough time making the leap to the first sum - what allows me to rewrite P(T|A) as the sum of the product of those two conditional probabilities?
Thanks