Ok I think I realized my problem. My tutorial solved a slightly different DE for R(r) which resulted in the diffence of powers. Also for this problem I think the n=0 case takes on the solution A_0 + B_0*ln(r) which would give a final solution u(r,theta)=3+2ln(r)/ln(2). I'm going to bed, let me...
Yeah I think you're right for some reason the -n-1 power is used in our class tutorial. Yes I understand how it was found and the principal of linear superposition. The second part of the expression is a constant because u is theta independent for the first set of boundary conditions.
Yeah I have and I think that leave's me with u(r,\vartheta) = \sum_{n=0}^\infty (A_n r^n + B_n r^{-n-1})(C_n cos(n\vartheta) + D_n sin(n\vartheta)) but I don't know how to apply the boundary conditions correctly
Homework Statement
Solve Laplace's equation \nabla^2 u(r,\vartheta) =0 in an annulus with inner radius r_1 and outer radius r_2 . (a) For boundary conditions take u(1,\vartheta) = 3 and u(2,\vartheta) = 5. (b) What is the solution using this second set of boundary conditions...
Homework Statement
The Bessel function generating function is
e^{\frac{t}{2}(z-\frac{1}{z})} = \sum_{n=-\infty}^\infty J_n(t)z^n
Show
J_n(t) = \frac{1}{\pi} \int_0^\pi cos(tsin(\vartheta)-n\vartheta)d\vartheta
Homework Equations
The Attempt at a Solution
So far I...
If you had an operator A-hat whose eigenvectors form a complete basis for the Hilbert space has only real eigenvalue how would you prove that is was Hermitian?
[SOLVED] Forth Order DiffEq
I've recently come across the following differential equations. y''''+y=0 and y''''-y=0. Can differential equations such as these be solved with any technique other than guessing for the particular solutions? They seem very simular to trig's equation but are still...
Use the Fourier series technique to show that the following series sum to the quantities shown:
1+1/3^2+1/5^2+...+1/n^2=pi^2/8 for n going to infinity
I foudn the series to be:
sum(1/(2n-1)^2,n,1,infinity)
but I don't know how to prove the idenity.
I don't know how to go about...