maddogtheman
- 18
- 0
Homework Statement
The Bessel function generating function is
<br /> e^{\frac{t}{2}(z-\frac{1}{z})} = \sum_{n=-\infty}^\infty J_n(t)z^n<br />
Show
<br /> J_n(t) = \frac{1}{\pi} \int_0^\pi cos(tsin(\vartheta)-n\vartheta)d\vartheta<br />
Homework Equations
The Attempt at a Solution
So far I have been able to use an analytic function theorem to write
<br /> J_n(t)=\frac{1}{2\pi i} \oint e^{\frac{t}{2}(z-\frac{1}{z})}z^{-n-1}dz<br />
(we are required to use this)
But now I have no idea where to go from here.
Last edited: