I'm trying to compute following integral (Wolfram doesn't give answer):
\int\sqrt{E-Bk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}-k\frac{cos(kr)}{sin(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{Ak^{2}}{sin^{2}(kr)}}dr
where A,B,C,D,E,F,k are constants.
Substitution t=sin(kr) leads to...