What to do when Wolfram doesn't give answer?

  • Thread starter Thread starter Settembrini
  • Start date Start date
  • Tags Tags
    Integral Root
Settembrini
Messages
5
Reaction score
0
I'm trying to compute following integral (Wolfram doesn't give answer):
\int\sqrt{E-Bk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}-k\frac{cos(kr)}{sin(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{Ak^{2}}{sin^{2}(kr)}}dr
where A,B,C,D,E,F,k are constants.
Substitution t=sin(kr) leads to
\int\sqrt{\frac{E}{k^{2}(1-t^{2})}-\frac{B}{t^{2}}-\frac{1}{kt\sqrt{1-t^{2}}}\sqrt{D+Fk^{2}\frac{1-t^{2}}{t^{2}}}-\frac{A}{t^{2}(1-t^{2})}}dt
The last integral is equal to
\int\frac{1}{t\sqrt{1-t^{2}}}\sqrt{(\frac{E}{k^{2}}+B)t^{2}-(A+B)-\sqrt{(F-\frac{D}{k^{2}})t^{4}+(\frac{D}{k^{2}}-2F)t^{2}+F}}dt
I don't have any idea what to do now. Maybe the substitution t=sin(kr) is not appropriate here?
Any help is appreciated.
 
Physics news on Phys.org
Settembrini said:
I'm trying to compute following integral (Wolfram doesn't give answer):
\int\sqrt{E-Bk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}-k\frac{cos(kr)}{sin(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{Ak^{2}}{sin^{2}(kr)}}dr
where A,B,C,D,E,F,k are constants.
Substitution t=sin(kr) leads to
\int\sqrt{\frac{E}{k^{2}(1-t^{2})}-\frac{B}{t^{2}}-\frac{1}{kt\sqrt{1-t^{2}}}\sqrt{D+Fk^{2}\frac{1-t^{2}}{t^{2}}}-\frac{A}{t^{2}(1-t^{2})}}dt
The last integral is equal to
\int\frac{1}{t\sqrt{1-t^{2}}}\sqrt{(\frac{E}{k^{2}}+B)t^{2}-(A+B)-\sqrt{(F-\frac{D}{k^{2}})t^{4}+(\frac{D}{k^{2}}-2F)t^{2}+F}}dt
I don't have any idea what to do now. Maybe the substitution t=sin(kr) is not appropriate here?
It's not obvious to me that you did the substitution correctly. If t = sin(kr), then dt = kcos(kr)dr. I might be wrong, but it appears that you replaced sin(kr) by t and dr by dt.

Even if you did the substitution correctly, it might not be helpful to do.

Also, homework and homework-type problems should be posted in the Homework & Coursework sections, not in the technical math sections. I am moving your post to Calculus & Beyond section under Homework & Coursework.
 
Sorry for the wrong forum.
I think I have done substitution correctly - extracting k^{2}cos^{2}(kr) from the expression in the first integral gives:
\int kcos(kr)\sqrt{\frac{E}{k^{2}cos^{2}(kr)}-\frac{B}{sin^{2}(kr)}-\frac{1}{ksin(kr)cos(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{A}{sin^{2}(kr)cos^{2}(kr)}}dr
So the expression kcos(kr)dr is present.
 
I don't see that that is much help. Something different you might try is to rewrite this:

$$\int\sqrt{E-Bk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}-k\frac{cos(kr)}{sin(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{Ak^{2}}{sin^{2}(kr)}}dr $$
as this
$$\int \sqrt{E-Bk^2cot^2(kr) - k cot(kr) \sqrt{D+Fk^2cot^2(kr)-Ak^2csc^2(kr)}}dr $$

I don't guarantee that this will be helpful, either. Where I'm going with this is possibly factoring the first three terms in the outer radical, and replacing the cot2(kr) term in the inner radical by csc2(kr) - 1.

Where did this problem come from? It looks complicated enough that it might not be solvable by analytic means.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top