Settembrini
- 5
- 0
I'm trying to compute following integral (Wolfram doesn't give answer):
\int\sqrt{E-Bk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}-k\frac{cos(kr)}{sin(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{Ak^{2}}{sin^{2}(kr)}}dr
where A,B,C,D,E,F,k are constants.
Substitution t=sin(kr) leads to
\int\sqrt{\frac{E}{k^{2}(1-t^{2})}-\frac{B}{t^{2}}-\frac{1}{kt\sqrt{1-t^{2}}}\sqrt{D+Fk^{2}\frac{1-t^{2}}{t^{2}}}-\frac{A}{t^{2}(1-t^{2})}}dt
The last integral is equal to
\int\frac{1}{t\sqrt{1-t^{2}}}\sqrt{(\frac{E}{k^{2}}+B)t^{2}-(A+B)-\sqrt{(F-\frac{D}{k^{2}})t^{4}+(\frac{D}{k^{2}}-2F)t^{2}+F}}dt
I don't have any idea what to do now. Maybe the substitution t=sin(kr) is not appropriate here?
Any help is appreciated.
\int\sqrt{E-Bk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}-k\frac{cos(kr)}{sin(kr)}\sqrt{D+Fk^{2}\frac{cos^{2}(kr)}{sin^{2}(kr)}}-\frac{Ak^{2}}{sin^{2}(kr)}}dr
where A,B,C,D,E,F,k are constants.
Substitution t=sin(kr) leads to
\int\sqrt{\frac{E}{k^{2}(1-t^{2})}-\frac{B}{t^{2}}-\frac{1}{kt\sqrt{1-t^{2}}}\sqrt{D+Fk^{2}\frac{1-t^{2}}{t^{2}}}-\frac{A}{t^{2}(1-t^{2})}}dt
The last integral is equal to
\int\frac{1}{t\sqrt{1-t^{2}}}\sqrt{(\frac{E}{k^{2}}+B)t^{2}-(A+B)-\sqrt{(F-\frac{D}{k^{2}})t^{4}+(\frac{D}{k^{2}}-2F)t^{2}+F}}dt
I don't have any idea what to do now. Maybe the substitution t=sin(kr) is not appropriate here?
Any help is appreciated.