Why only first brillouin zone?

neu
Messages
228
Reaction score
3
I realize this a fundamental flaw in my understanding but I can't seem to get my head around it.

I understand that bragg reflection occurs at the zone boundary and so electron wavevectors are diffracted back into the 1st brillouin zone, but what is the justification for only considering the 1st brillouin zone, for example, when considering energy gaps?

This is also connected with my earlier question about why Umklapp processes are required, where large k is transmitted back into 1st brillouin zone by G:

K1+K2=K3+G
 
Physics news on Phys.org
The reason why it is only necessary to consider the first Brillouin zone lies in the fact that the wave function in a crystal is written as a function with the periodicity of the lattice times a plane wave, so that in one dimension:

<br /> \psi_{nk}(x) = e^{i k r} u_{nk}(x)<br />

The plane wave is unique only up to a reciprocal lattice vector. This is seen by considering the reciprocal lattice vectors which in 1D are given by \mathbf{G}=\frac{2n\pi}{a}:

<br /> e^{i G_{n1} r}= e^{i G_{n2} r},<br />

for all values of n1 and n2. The interval is often chosen to be -pi/a to pi/a to get the band structure around a symmetric interval.
 
Ok, thanks for that

I understand Bloch waves. So are you saying that a bloch wave traveling through the crystal is the same in all brillouin zones so consideration of which one is arbitary?

So what about the electrons which remain within the 1st brillouin zone as their wavevector K is large enough to experience diffraction (laue condition: delta K=G & at zone boundary min kin for diffraction = (delta k/2) = G/2) ?

I think i understand. The pure isotropic crystal has translational symetry, any position has same properties as that position translated by the lattice vectors. So every brillouin zone is equivalent and choice between any 1st zone, or any 2nd zone is arbitrary. So electrons which are bound behave in the same way in every brillouin zone, as do electrons passing through the crystal.

so may only consider 1st brilluoin zone.

is that the reasoning or am I missing something? Sorry to go on about it!
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Replies
18
Views
8K
Replies
7
Views
3K
Replies
4
Views
8K
Replies
4
Views
8K
Replies
2
Views
5K
Replies
7
Views
2K
Back
Top