What happens when a beam of sub-relativistic electrons (NEGATIVELY-charged) is fired point blank into proton targets (electronically-stripped Hydrogen)?
There is not much discussion of this online. Most discussions of targetting nuclei are of the Rutherford experiment type, with + charged probe particles.
The best I can glean about - charge experiments is that (1)ordinary electron capture takes place or (2)scattering. Electrons can emit photons and perhaps set their angular momenta to correspond to requirements of Hydrogen electron states. If not, then the electron probe "loses" the location of the proton, though obviously still subject to its attraction. This follows from the DeBroglie wave of the electron. At low momentum, the wavelength of an electron is much larger than the size of the proton. So the proton itself apparently vanishes as far as providing a target for the electron is concerned. Finally, there is a strong force barrier if an electron gets too close. The negative d quark get pulled toward the electron while the two positive u quarks are pushed away in the opposite direction. This strains the "strings" connecting them and causes maximum resistance to that coulomb attraction. The electron just bounces off, thereby scattering.
At higher momenta, the deBroglie wavelength of an electron would be small enough to sense the electrical substructure of the proton. This was crucial in verifying the quark idea experimentally.
At extreme high momenta, like modern electron-proton collider experiments, then the electron probe evidently can disrupt the proton substructure and produce spectacular events. My guess is that these occur outside the proton proper and would involve weak interactions.
If an electron were actually to make it into a proton, then the proton would deform to surround the invader with uniformly isotropic positive charge (same at every angle), and thereby allow the electron to pass right through. What doesn't happen is that the electron joins the strongly bound proton, because electrons don't feel the strong force (they are colorblind).
maybe maybe