Is a Pseudo-Wavefunction Really a Mixed State?

Modey3
Messages
135
Reaction score
1
Hello,

I'm studying pseudopotentials right now, and I had an epiphany that the pseudo-wavefunction is really mixed-state of the original Hamiltonian. Has anyone ever thought about a pseudo-wavefunction that way? Just curious.

modey3
 
Physics news on Phys.org
I'm don't think that's correct. Pseudopotentials remove nodes that are near the core, so a pseudopotential for Nb (say) will have 4d valence states, however the 4d states will not have a node near the core so they really will look like 3d states. I don't think you can accomplish elimination of a node by mixing states with n > 4.
 
kanato,

If you take the overlap integral between the pseduo-wavefunction and a particular all-electron valence and the core wavefunctions you get non-zero terms. This means that the pseudo wavefunction can be represented as a sum of core-states and the valence states each scaled by their overlaps with the pseduo-wavefunction. The OPW-method does this.
 
Sure, there's non-zero overlap, but I am unconvinced as to whether the all-electron basis is "complete enough" to represent the pseudo-wavefunction.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top