Weak and strong equivalence- what is the difference really?

Click For Summary
Weak equivalence principle (WEP) asserts that the trajectory of a freely falling body is independent of its internal structure and composition, exemplified by different objects falling at the same rate in a gravitational field. Strong equivalence principle (SEP) expands on WEP by including self-gravitating bodies and states that local non-gravitational experiments yield the same results regardless of the reference frame's velocity or location in the universe. The Einstein equivalence principle (EEP) encompasses WEP and adds that local experiment outcomes are consistent across different freely-falling frames. Confusion arises from the similarity in definitions between WEP and SEP, particularly in various sources. Understanding these distinctions is crucial for grasping the principles of gravity and relativity.
trelek2
Messages
86
Reaction score
0
Hi!

My lecture notes make me really confused as to what is the difference between weak and strong equivalence. I also read about it on wikipedia, but I'm still not sure. Can anyone give an example how in real life (thought experiment?) of what weak and strong equivalence is.
 
Physics news on Phys.org
The Wikipedia article http://en.wikipedia.org/wiki/Equivalence_principle seems messed up. Its statement of the strong and weak equivalence principles are basically identical. I think what they call the Einstein equivalence principle is what most people call the strong equivalence principle.
 
http://relativity.livingreviews.org/Articles/lrr-2006-3/

"One elementary equivalence principle is the kind Newton had in mind when he stated that the property of a body called “mass” is proportional to the “weight”, and is known as the weak equivalence principle (WEP). An alternative statement of WEP is that the trajectory of a freely falling “test” body (one not acted upon by such forces as electromagnetism and too small to be affected by tidal gravitational forces) is independent of its internal structure and composition. In the simplest case of dropping two different bodies in a gravitational field, WEP states that the bodies fall with the same acceleration (this is often termed the Universality of Free Fall, or UFF)."

"The Einstein equivalence principle (EEP) is a more powerful and far-reaching concept; it states that:
1. WEP is valid.
2. The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in which it is performed.
3. The outcome of any local non-gravitational experiment is independent of where and when in the universe it is performed."

"These ideas can be summarized in the strong equivalence principle (SEP), which states that:
1. WEP is valid for self-gravitating bodies as well as for test bodies.
2. The outcome of any local test experiment is independent of the velocity of the (freely falling) apparatus.
3. The outcome of any local test experiment is independent of where and when in the universe it is performed."
 
Last edited by a moderator:
A good one to everyone. My previous post on this subject here on the forum was a fiasco. I’d like to apologize to everyone who did their best to comment and got ignored by me. In defence, I could tell you I had really little time to spend on discussion, and just overlooked the explanations that seemed irrelevant (why they seemed irrelevant, I will tell you at the end of this). Before we get to the point, I will kindly ask you to comment having considered this text carefully, because...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K