kev said:
This is true for single boosts of a rod that is initially at rest in the observer's rest frame. However a combination of boosts such as a parallel boost followed by a perpendicular boost (or vice versa) is equivalent to a single boost at an angle that is neither parallel of perpendicular.
What about the single coordinate boost from S' to S'', and the single boost from S' to S, each considered in isolation? Surely these boosts have no memory: they can't know if they're part of a sequence, they don't know what other coordinate systems we may have thought about before or after. All we tell them is what the coordinates are of events according to S'. Can we describe, just from the perspective of the coordinate boost from S' to S'', how the relativity of simultaneity relates to the rotation of A? In S', neither end of A is further north than the other at any time, so the "intuitive" idea that events to the north happen sooner in S'' doesn't seem to explain it. Won't two events, one at each end of A, that are simultaneous in S' also be simultaneous in S''?
I suppose the difference between this scenario and my earlier formula must be that it assumed the 3-vector to be transformed represented the length and alignment of a rod at rest in the input frame, whereas here, for example, neither A nor C are at rest in S'. So we have to take account of that movement in some way, and maybe a displacement 3-vector isn't the best way to represent that, or maybe I'd need to define it differently.
In the derivation of length contraction, it was possible to calculate the rod's length in a frame where it's moving by measuring its ends at the same instant in that frame. So I guess here we'd have to measure the position of its ends at the same instant in the frame that results from the coordinate boost. Maybe I need to think of it from the other side: given that A has a certain angle in S'', what how will it end up when we boost back to S', or what angle would it have to have, given that a coordinate boost of a certain velocity leaves it perpendicular to the direction of the boost. Hey, if A was at rest in S'', it would be rotating in the opposite direction when we boost coordinates to S', wouldn't it? Wow, even more complicated! Would it be possible for the rotation due purely to a rod's alignment wrt the boost to be canceled out by the rotation due to the direction of its velocity?
kev said:
Let us say the second boost is perpendicular. This second boost is a boost of a rod that is not at rest in the original frame and the statement that a perpendicular boost does not cause a rotation is only valid for a rod that no parallel motion. Similarly, the statement that a parallel boost does not cause a rotation is only true for a rod that has no perpendicular motion.
Hmm... Suppose we begin by analysing the scenario in S', then we boost coordinates to S''. Beforehand we see three rods parallel to each other. We boost coordinates by a velocity perpendicular to the rods. One rotates as we change coordinates, two don't rotate. What was different about the one that rotated: before and after the boost, it's velocity is not parallel to the boost. Likewise for the coordinate boost from S' to S.
In boosting coordinates from S' to S'', A has no motion parallel to the boost in S', and it rotates, whereas the rods whose motion was parallel to the boost didn't rotate. In boosting coordinates from S' to S, C has no motion parallel to the boost in S', and it rotates from S' to S.
What would the scenario look like in a frame with the same velocity as S'' has in S, but obtained directly from S with one pure boost? How would this frame differ from S''?