Total amount of energy in the Universe...
The distribution of galaxies beyond the Milky Way.
Hubble radius:
R_0 = \frac{c}{H_0}
\boxed{R_0 = 1.286 \cdot 10^{26} \; \text{m}}
However, the present observable Universe radius exceeds the Hubble radius due to cosmic inflation:
\boxed{R_u \geq R_0}
R_u = 3.419 \cdot R_0 = \frac{3.419 c}{H_0} = 4.399 \cdot 10^{26} \; \text{m} \; \; \; (46.5 \cdot 10^9 \; \text{ly})
Universe observable radius:
\boxed{R_u = 4.399 \cdot 10^{26} \; \text{m}}
Hubble critical density:
\rho_c = \frac{3 H_0^2}{8 \pi G}
Universe sphere volume:
V_u = \frac{4 \pi R_u^3}{3}
For the post #5 equation for the Universe total energy integration by substitution:
E_t = \rho_c c^2 V_u = \frac{4 \pi c^2}{3} \left( \frac{3 H_0^2}{8 \pi G} \right) R_u^3 = \frac{H_0^2 c^2 R_u^3}{2 G} = 3.112 \cdot 10^{71} \; \text{j}
\boxed{E_t = \frac{H_0^2 c^2 R_u^3}{2 G}}
\boxed{E_t = 3.112 \cdot 10^{71} \; \text{j}}
These are my equations for the total Universe_mass-energy equivalence based upon the Lambda-CDM model parameters and the Hubble Space Telescope (HST) and WMAP observational parameters and the observable Universe radius in Systeme International units.
R_u = 4.399 \cdot 10^{26} \; \text{m} - observable Universe radius
H_0 = 2.3298 \cdot 10^{- 18} \; \text{s}^{- 1} - Hubble parameter (WMAP)
\Omega_s = 0.005 - Lambda-CDM stellar Baryon density parameter
dN_s = 10^{22} - Hubble Space Telescope observable stellar number
dV_s = 3.3871 \cdot 10^{78} \; \text{m}^3 \; \; \; (4 \cdot 10^{30} \; \text{ly}^3) - Hubble Space Telescope observable stellar volume
M_{\odot} = 1.9891 \cdot 10^{30} \; \text{kg} - solar mass
Hubble Space Telescope observable stellar density:
\rho_s = M_{\odot} \left( \frac{dN_s}{dV_s} \right)
Universe observable radius:
\boxed{R_u = 4.399 \cdot 10^{26} \; \text{m}}
Universe sphere volume:
V_u = \frac{4 \pi R_u^3}{3}
Observable Universe_mass-energy equivalence total mass integration by substitution:
M_t = \frac{\rho_s V_u}{\Omega_s} = \frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3 = 4.188 \cdot 10^{56} \; \text{kg}
Observable Universe_mass-energy equivalence total mass
\boxed{M_t = \frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3}
\boxed{M_t = 4.188 \cdot 10^{56} \; \text{kg}}
However, only a fraction of this total mass exists in the form of mass in the Universe, which is composed of 22.8% cold dark matter and 4.56% ordinary baryonic matter.
\Omega_m = \Omega_{c} + \Omega_b = 0.2736 - Lambda-CDM total matter density
Universe total matter mass integration by substitution:
M_u = \Omega_m M_t = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_m}{\Omega_s} \right) \left( \frac{dN_s}{dV_s} \right) R_u^3 = 1.146 \cdot 10^{56} \; \text{kg}
Universe total matter mass:
\boxed{M_u = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_m}{\Omega_s} \right) \left( \frac{dN_s}{dV_s} \right) R_u^3}
Universe total matter mass:
\boxed{M_u = 1.146 \cdot 10^{56} \; \text{kg}}
Universe_mass-energy equivalence integration by substitution:
E_t = M_t c^2 = \left[ \frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3 \right] c^2 = \frac{4 \pi c^2 M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3 = 3.764 \cdot 10^{73} \; \text{j}
Universe_mass-energy equivalence total energy:
\boxed{E_t = \frac{4 \pi c^2 M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) R_u^3}
Total amount of energy in the Universe:
\boxed{E_t = 3.764 \cdot 10^{73} \; \text{j}}
However, only a fraction of this total energy exists in the form of energy in the Universe, which is composed of dark energy at 72.6%.
\Omega_{\Lambda} = 0.726 - Lambda-CDM dark energy density
Total amount of dark energy in the Universe integration by substitution::
E_{\Lambda} = \Omega_{\Lambda} E_t = \frac{4 \pi c^2 M_{\odot}}{3} \left( \frac{\Omega_{\Lambda}}{\Omega_s} \right) \left( \frac{dN_s}{dV_s} \right) R_u^3 = 2.733 \cdot 10^{73} \; \text{j}
Universe dark energy total energy:
\boxed{E_{\Lambda} = \frac{4 \pi c^2 M_{\odot}}{3} \left( \frac{\Omega_{\Lambda}}{\Omega_s} \right) \left( \frac{dN_s}{dV_s} \right) R_u^3}
Total amount of dark energy in the Universe:
\boxed{E_{\Lambda} = 2.733 \cdot 10^{73} \; \text{j}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Hubble%27s_law"
http://en.wikipedia.org/wiki/Lambda-CDM_model"
http://en.wikipedia.org/wiki/Universe"
http://en.wikipedia.org/wiki/Observable_universe"
http://en.wikipedia.org/wiki/Dark_matter"
http://en.wikipedia.org/wiki/Dark_energy"
http://en.wikipedia.org/wiki/Hubble's_law#Interpretation"
http://en.wikipedia.org/wiki/Hubble_volume"
http://en.wikipedia.org/wiki/Friedmann_equations#Density_parameter"