ThomasT said:
Just simplifying. Shouldn't varying θ from 0° to 90° be enough to demonstrate what you want to demonstrate?
billschnieder said:
Why should it? Try to understand the point before you suggest what should be enough or not. The simple fact the <θ> in your "simplification" is different from <θ> in my original example 'should' tell you that it is not the same thing we are talking about.
I also mentioned that x was the length of one side of a triangle. I assumed it will be obvious to most that a length can not be negative which means you should take its absolute value. Which means <x> is not the same as cos<θ> for the same reason that |<v>| does not mean the same thing as <|v|>. You do not deny that randomly varying θ reaches the conclusion I reached so your response here is curious and very surprising.
The values I input for 0° --> 90° give roughly <x>2 + <y>2 = .8, which corresponds with what you got. And <x2 + y2> = .975. So, isn't the net effect the same -- you get a contradiction between separable and nonseparable formulations?
billschnieder said:
I still do not think you understand it, otherwise you will not conclude that you do not need it.
Only that we already have illustrations of the incompatibility between separable and nonseparable formulations. Bell's, for one.
ThomasT said:
And the conclusion is that qm is incompatible with Bell's generalized LR form (2). You do agree with that, don't you?
billschnieder said:
No I do not agree. I would instead say that, neither QM nor Bell test experiments are legitimate sources of terms for the inequality 1 + P(b,c) ≥ |P(a,b) - P(a,c)|. Simply because all three terms are not defined within the same probability space neither QM nor in Bell test experiments. Non-locality and/or reality are completely peripheral here.
The inequality is based on Bell's LR form. Any model of entanglement taking that form must satisfy his inequality. The question concerns how locality and reality might be explicitly encoded in the same model, while remaining compatible with qm, and Bell shows that they can't be.
billschnieder said:
There is no P(a,b,c) distribution from which you can extract the three terms, not in QM, not in Bell test experiments and that alone explains why you can not use QM nor Bell test experiments as sources for those three terms.
That's the point of DrC's illustration. (a,b,c) is the LR dataset, based on the idea that underlying predetermined particle parameters exist independent of measurement.
There is no such dataset in qm. Hence, the conflict.
ThomasT said:
Bell is comparing his form (2) with qm. They're incompatible. DrC is comparing Einstein realism (via his numerical treatment) with qm. They're incompatible. Both comparisons are mathematically sound.
billschnieder said:
This is wrong. There is no conflict with QM until Bell introduces the third angle. Please check his original paper again to confirm that this is correct.
The results (10) and (11) are in conflict with qm. The unit vectors a and b in (2) can refer to any θ. The unit vector, c, is introduced after that, specifically to derive the inequality. The whole point of Bell's paper is that the generalized LR form (2) is incompatible with qm.
billschnieder said:
I mentioned DrC article because the same error is made in which expectation values from three incompatible non-commuting measurements are combined in the same expression. Are you claiming hereby that it is sound mathematics to do that? This is the question you did not answer.
Yes, it's sound mathematics to do that given what he's trying to show. There are limits on how explicit LR models can be formulated. These limits are based on certain assumptions. Based on the assumption of realism, DrC has fashioned a numerical treatment that demonstrates a conflict between that assumption and qm.
ThomasT said:
If your point is that this doesn't inform us about the underlying reality, then I agree with you.
billschnieder said:
I'm not just interested in stating that. I am explaining WHY any result so obtained can not inform us of anything other than the fact that a subtle mathematical error has been made, ie. substituting incompatible expectation values within Bell's inequality.
We sort of agree then. The results can't inform us of anything other than the fact that a certain mathematical form can't possibly agree with qm or experiment. But, what Bell did is not a mathematical error. Bell constructed a generalized LR form and compared it with qm. They're incompatible.
If you can present another form that an LR model can take, that meets the the requirements for an explicit LR model, and reproduces qm predictions, then that might be interesting.
billschnieder said:
Did you read the one posted in this thread?
Sure, but I don't really understand what he did.
billschnieder said:
You seemed to dismiss it earlier based on what you had heard about his other offerings.
I thought he might be doing essentially the same thing in both, ie., allowing a and b to communicate, but 'locally' in an imaginary space, which wouldn't be an LR model. Then I was wondering if there might be 'any' way to translate what he did into a realistic local view of the underlying mechanics. But, even if so, if it can't be made explicitly LR, that is with a clearly 3D classical LR encoded in the model, then it isn't an LR model.
billschnieder said:
You may ask how come his LR model could violate the inequality, and the answer is for the same reasons I have already explained. -- the terms he used are not all defined within the same probability space. It is the same reason why QM violates the inequalities.
I don't think this clarifies it fully enough.
The inequality is based on a generalized LR form, the salient feature of which is the separability of the underlying parameter determining coincidental detection. Standard qm and Christian's formalisms violate the inequality because those formalisms don't encode a feature that skews the underlying parameter nonseparability (ie., they don't skew the relationship between the particles) -- qm, 'nonlocally' via the projection, and Christian's Clifford algebraic models by allowing the particles to communicate 'locally' via a null interval in C-space. I'm not sure how Christian's paper in this thread does it.
billschnieder said:
I haven't seen anybody here argue that his model presented in the above paper is not LR, nor have I seen anyone argue that his model does not reproduce the QM result. All I have seen is discussion around his other papers.
Hence, my call for experts or at least more knowledgeable people than myself. Glad you showed up.
His model does reproduce the qm result. But it doesn't 'look' LR because of the bivectors and the algebra he employs. I'm just plodding along trying to learn as I go, so if you or anybody else has some insights into Christian's stuff to offer then that would be most appreciated. And thanks for your input so far. It's motivating me to think about this a little more and not just set it aside.