Does Sequence (n,1/n) Converge or Diverge?

  • Thread starter Thread starter zendani
  • Start date Start date
  • Tags Tags
    Sequence
zendani
Messages
15
Reaction score
0
if we have a sequence (n,1/n) , n E N , the sequence converges?

lim n = infinite
lim 1/n = 0

(1,1),(2,1/2),(3,1/3)...(n,1/n)

it is convergent and divergent?!
 
Physics news on Phys.org
if anybody knows about such a sequence, book or reference, please write here

because i want to learn it

Thank you
 
zendani said:
if anybody knows about such a sequence, book or reference, please write here

because i want to learn it

Thank you

In order to converge in R^2, the x-y plane, a sequence of points has to converge in each variable separately. So the sequence (1, 1/n) does not converge.
 
For a sequence of the form (xn,yn) to converge, we require that both xn and yn converges. Here, xn=n, yn=1/n. While yn converges to 0, xn diverges so we say that (n,1/n) diverges.
 
thank you Stevel27 and quasar987, i got it

stevel, i have (n,1/n) no (1,1/n)

so (n, 1/n) diverges and (1,1/n) converges...
 
correct! :)
 
zendani said:
thank you Stevel27 and quasar987, i got it

stevel, i have (n,1/n) no (1,1/n)

so (n, 1/n) diverges and (1,1/n) converges...

Yes, you're right about that. Typo on my part, but of course (1, 1/n) does converge.
 
Back
Top